горах меняются пищевые пристрастия – например, внезапно хочется кислого или соленого. Вероятно, это связано с химическими изменениями в организме
№ 60Секреты кровотока и уравнение Бернулли
В XVIII столетии швейцарский математик и физик Даниил Бернулли (1700–1782) подарил миру закон гидравлики, названный впоследствии его именем. Этот закон (или уравнение, как его еще иногда называют) описывает закономерности потока идеальной жидкости, то есть такой, на которую не воздействует внутреннее трение. Выглядит он так:
Здесь ρ – плотность жидкости, V – скорость ее потока, h – высота, на которой она находится, p – давление в той точке, где расположен центр массы жидкости, а g – хорошо вам знакомое ускорение свободного падения. Эту закономерность применяют и к газам.
Бернулли установил, что давление жидкости, текущей по трубам, становится больше в тех сегментах трубы, где скорость жидкости становится меньше. А там, где скорость больше, давление уменьшается. Кроме того, он доказал: когда жидкость проходит через узкие участки, ее давление уменьшается! Но позвольте, почему же тогда врачи рекомендуют нам «снижать давление» и говорят об опасности закупорки сосудов? Дело в том, что кровеносная система человека сильно разветвлена и величина скорости крови зависима от количества капилляров и их, как говорится, «общего просвета». Кроме того, кровь в наших сосудах обладает вязкостью, подвержена трению, может образовывать сгустки, и, следовательно, в случае сужения сосудов опасность вполне реальна. То есть уравнение Бернулли к человеческим сосудам практически неприменимо!
(ρV2) + ρgh + p= const.
2
Бернулли был почетным членом Парижской академии наук и Петербургской академии – в ее изданиях он опубликовал более 70 работ
Принцип Бернулли объясняет, почему самолет не падает. А явление подъемной силы открыл в 1904 году русский физик Николай Жуковский.
№ 61Опасное сближение. О чем надо помнить пассажирам
Вспомните: наверняка многие в детстве, невзирая на запреты родных, играли поблизости от железной дороги. Что часто говорили нам мамы и бабушки? «Не подходи к движущемуся поезду – он может притянуть к себе!» Возможно, они были не в курсе закона Бернулли, но суть его передали достаточно верно.
Когда мы стоим возле железнодорожного полотна и мимо нас проносится поезд, он буквально обдает нас воздушным потоком. Этот «шлейф» возникает потому, что в воздухе тоже присутствует сила трения и под ее воздействием поезд увлекает за собой большую массу воздуха. Ее скорость достаточно высока. Но вспомните: чем выше скорость, тем меньше давление! Соответственно, если вы попали в этот воздушный поток, то вы почувствуете, как вас ощутимо толкнуло в сторону идущего поезда. Особенно реальна эта опасность в отношении скоростных поездов. Так что требования к пассажирам не стоять у края платформ имеют под собой вполне реальную основу.
Все вышесказанное справедливо и в отношении морских судов. Нередки были случаи, когда корабли, проходя в непосредственной близости друг от друга, создавали «тягу», и в итоге происходило столкновение. В итоге в морские уставы разных стран были внесены пункты относительно предельно допустимых расстояний при прохождении судов. Конечно, во время морского сражения подобные правила соблюдать было невозможно, и некоторые корабли погибали именно в результате возникшего «потока притяжения», которого в условиях боя было не избежать.
Запрет автомобилистам останавливаться на обочинах оживленных трасс объясняется в числе прочего и тем, что проходящие многотонные фуры создают опасность «притяжения»
Физика микромира
№ 62Маленькая, да удаленькая: молекула
Слово «молекула» в переводе представляет собой уменьшительное от латинского moles – масса. Или, как шутят физики, «молекула» означает «массушка» или «массочка».
Согласно определению (а определения понятий молекулы и атома были закреплены на съезде ученых-химиков в Карлсруэ в 1860 году), молекула – это наименьшая частица вещества, обладающая всеми свойствами этого вещества. Другими словами, если мы ухитримся от куска сахара отломать одну молекулу и положить ее на язык, она будет сладкой. Более мелкие частицы, например, атомы, из которых в свою очередь состоит молекула, не обладают всей полнотой качеств изначального вещества. В физике также принято называть молекулами свободные атомы, например составляющие одноатомных газов.
Каковы размеры молекул? Обычно приводят такой пример. Если увеличить все тела в мире в миллион раз, то молекула станет размером примерно вполовину точки печатного текста. А человеческий палец после этого увеличения приобретет толщину около 9–10 километров! Есть и еще одно популярное сравнение: обычное яблоко во столько раз больше молекулы, во сколько раз яблоко меньше, чем планета Земля… Примерный размер «средненькой молекулы» – около 0,00000016 сантиметра.
Молекула феруловой кислоты
Хорошо всем известные химические формулы в большинстве случаев дают представление именно о молекулярном и атомарном строении веществ. Так, формула воды H2O говорит о том, что молекула воды состоит из трех атомов: одного атома кислорода и двух атомов водорода.
Еще один пример: если из воздушного шарика, надутого тремя граммами водорода, выпускать по одному миллиону молекул водорода в секунду, то шарик опустеет через 30 миллиардов лет
№ 63Все склеится, все перемешается. Явление диффузии
Вы когда-нибудь рисовали акварелью или гуашью? Наверняка помните, как макали покрытую краской кисть в баночку с водой, в воде появлялись красочные разводы, а потом, после нескольких часов рисования, вода приобретала однородный «серо-буро-малиновый» цвет?
Или еще пример – «парфюмерный». Дама перед выходом на улицу воспользовалась духами. Она брызнула ароматной жидкостью только на свои волосы, но еще несколько часов спустя, после того как она ушла, в комнате ощущался явственный аромат духов.
Или – вы разбираете документы в старом архиве, где папки с бумагами были сложены в стопки на протяжении десятков лет. Желая прочитать несколько страниц, вы с трудом отделяете одну от другой…
Все эти примеры объединяет одно. Это примеры так называемой диффузии. В переводе с латыни слово «diffusio» означает «распространение», «растекание». Им обозначают взаимное проникновение мельчайших частиц одного вещества между молекулами или атомами другого вещества. В наших примерах молекулы краски начали перемешиваться с молекулами воды, молекулы духов распространились среди молекул воздуха, а бумажные листы, пролежавшие спрессованными много лет, тоже начали понемногу «проникать» друг в друга… Интересно, что этому процессу подвержены даже металлы: если крепко прижать два куска металла один к другому, то у них тоже начнется процесс диффузии – правда, протекать он будет очень, очень медленно. А в жидкостях и газах диффузия обычно протекает очень быстро, заканчиваясь полным перемешиванием «участников процесса».
Впервые полное описание процессов диффузии дал немецкий физик Адольф Фик (1829–1901)
№ 64И что они суетятся? Броуновское движение
В 1827 году шотландский ботаник Роберт Броун (Браун) (1773–1858) занимался изучением физиологии растений, в частности строением пыльников. Он обратил внимание на то, что пыльцевые зерна, располагавшиеся в растительном соке, находились в непрерывном движении, хотя, казалось бы, никакая сила извне на них не воздействовала!
Правда, Броун не довел до конца свои наблюдения – это сделал француз Луи Жорж Гуи (1854–1926). Он пришел к выводу, что интенсивность «броуновского движения» (именно так обозначили открытое шотландским ученым явление) не зависит ни от освещенности, ни от электромагнитного поля… И решил, что движение вызывается «тепловым движением молекул». То есть движение «броуновских частиц» – мелких «кусочков» вещества – вызвано тем, что об них ударяются окружающие их молекулы. (В ранних исследованиях ученые просто не видели молекул из-за несовершенства техники.) Если частичка невелика, то под ударами окружающих ее молекул она будет метаться то в одну, то в другую сторону. На рубеже XIX–XX веков исследователи отметили, что движение частиц ускорялось при нагревании.
И к середине ХХ столетия теория о броуновском движении была сформулирована: оно представляет собой беспорядочное движение микроскопических частиц вещества, взвешенных в жидкости или газе, под влиянием теплового движения частиц этой жидкости или газа. Броуновское движение наглядно иллюстрирует теорию о хаотическом движении атомов и молекул.
«Броуновское движение» и рассмотренный нами ранее процесс диффузии неразрывно связаны
№ 65Сколько атомов в молекуле? Хороший вопрос
Демокрит – «отец атомарной теории» – предполагал, что атомы имеют разнообразную форму и могут сцепляться друг с другом при помощи чего-то напоминающего крючочки и петельки. На самом же деле чаще всего атомы объединяются силами своих «составных частей» – электронов. Электроны, способные взаимодействовать, представляют собой нечто вроде крошечных магнитиков – они-то и обеспечивают сцепление. Такую связь называют ковалентной. В случае другого вида – ионной связи – атомы как бы обмениваются электронами, и в итоге возникает достаточно прочная связь. Способность атома эту связь обеспечивать именуется валентностью.
Что же касается количества атомов в молекуле, оно может быть разнообразно, например, в молекуле воды их всего три. Но это не предел – в составе молекулы ДНК их миллиарды!