Анатомия жива! Удивительные и важные медицинские открытия XX-XXI веков, которые остались незамеченными — страница 5 из 24

Сложим открытия в одну корзину

Сегодня мы знаем, что позвоночник снабжает кровью уникальная бесклапанная венозная система, соединяющая мозг, глаза, спинной мозг и таз. Это превращает ее в важнейший «бассейн», куда организм при необходимости может перелить лишнюю кровь. Это нужно, чтобы защитить сосуды от излишнего давления, а еще помогает нам оставаться прямоходящими млекопитающими, которые могут смотреть в небо, не боясь упасть в обморок.

Как открытие позвоночной венозной системы изменило медицину

Без детальных знаний о строении и расположении позвоночных вен невозможна высокоточная хирургия позвоночника. Многие пациенты, повредившие спину при падении или в автокатастрофе, должны сказать спасибо Жильберу Бреше, Оскару Бэтсону и его обезьянкам за эффективные восстанавливающие операции с низким риском серьезных кровотечений.

Но самое главное, что благодаря этому открытию мы можем отправлять в головной мозг крупные лекарственные молекулы вроде гибридных белков и моноклональных[4] антител. Добиться того же эффекта, просто дав человеку таблетки, невозможно, потому что от всех подозрительно крупных молекул головной мозг защищает гематоэнцефалический барьер. Так называется фильтр из плотно соединенных между собой клеток, из которых состоят стенки кровеносных сосудов, снабжающих кровью головной мозг.

Знания об устройстве сети позвоночных вен позволили найти способ обмануть гематоэнцефалический барьер. Хирурги сумели разработать метод периспинальной инъекции [29], позволяющий доставлять препараты в мозг не напрямую, а через спинномозговые вены. В результате человечество получило уникальную возможность лечить часть сложных неврологических расстройств – теперь для этого достаточно сделать несколько уколов в спину.

Глава 3Могут ли нейроны создавать гормоны: 1928–1963

Гипоталамо-гипофизарный комплекс прячется в нижней части головного мозга. Оттуда он «правит» органами и тканями: создает и выделяет гормоны, контролирующие работу тела. Однако всего сто лет назад идея о том, что в мозге могут образовываться гормоны, казалась еретической даже самым дерзким исследователям.

Как головной мозг управляет телом

Головной мозг – командный центр нервной системы [30]. Он получает информацию от органов чувств, обрабатывает ее и превращает в сигналы, при помощи которых заставляет тело отвечать на вызовы окружающей среды. Для управления телом у мозга есть две системым [31]: нервная и эндокринная, то есть гормональная. Обойтись одной только нервной системой не получится, и вот почему.

Нервная система состоит из двух частей. Центральная нервная система – это головной мозг и отходящий от него пучок «проводов», которые собраны в крупный «кабель» – спинной мозг. От основного «кабеля» отделяются отдельные «провода» – нейроны периферической нервной системы, передающие приказы от мозга всем органам и тканям. Они образуют периферическую нервную систему.

О том, какие участки коры головного мозга отвечают за движение, а какие – за чувствительность, говорится в главе 6. А о том, как устроены и работают нейроны, – в главе 8.

Для передачи сигналов нервная система использует электрические сигналы. Они стремительно пробегают по «проводу»-нейрону, быстро достигают цели, но так же быстро и затухают. Чтобы достичь долговременного эффекта, пришлось бы передавать сигналы очень часто, а это сложно и энергетически невыгодно.

В этой ситуации на помощь приходят гормоны – химические вещества, которые распространяются вместе с током крови. В артериях кровь движется со скоростью 4,9–19 см/с [32], а в венах еще медленнее – со скоростью 1,5–1,7 см/с. По сравнению с электрическими импульсами, отдельные из которых достигают цели со скоростью 120 м/с, химический способ передачи информации работает откровенно медленно. Зато когда гормоны добираются до мишени, они могут поддерживать нужный эффект достаточно долго – зачастую до тех пор, пока из мозга не поступит сигнал «отбой».



Но чтобы «химическая почта» заработала, мозгу приходится не только генерировать нервные импульсы, но и самостоятельно создавать гормоны. Для этого у него есть своеобразная фабрика-кухня [33], объединяющая нервную и эндокринную системы – комплекс «гипоталамус – гипофиз». Именно здесь электрические сигналы из других участков мозга преобразуются в гормоны, которые управляют работой тканей-мишеней и регулируют синтез и выделение гормонов из других желез.

Но это сегодня мы знаем, что гипоталамо-гипофизарная система – фабрика гормонов [34]. Еще в начале прошлого века идея о том, что в мозге могут образовываться гормоны, большинству исследователей казалась дикой. И это при том, что первым анатомические структуры под названиями «гипоталамус» и «гипофиз» в своих работах упомянул еще древнеримский врач Гален Пергамский во II веке нашей эры [35].

Что ученые знали о гипоталамо-гипофизарной системе к началу XX века

Первым гипоталамус и гипофиз описал римлянин Гален. Он считал, что комплекс «гипоталамус – гипофиз» образует воронку, которая отводит излишек слизи из третьего желудочка мозга в носоглотку: то есть, по мнению Галена, люди сморкаются жидкостью из мозга. Поскольку вскрывать трупы было строго запрещено, это мнение доминировало в науке больше полутора тысяч лет.

В 1315 году итальянский анатом Мондино Луцци возобновил давно позабытую традицию вскрытия мертвых тел. Впервые за долгие годы он получил возможность увидеть мозг своими глазами. Возможно, именно это натолкнуло его на яркую новаторскую идею. В трактате Anathomia Луцци предположил, что третий желудочек, гипоталамус и гипофиз могут объединять различные функции организма, в том числе психические, эмоциональные и поведенческие реакции.

Как мы сегодня знаем, Луцци был не так уж далек от истины. Однако его идеи не пользовалась популярностью вплоть до конца XVII века. Даже пионер нейроанатомии Томас Уиллис [36], автор трактата о мозге Cerebri Anatome 1664 года, все еще писал, что гипофиз фильтрует выделения из мозга прямиком в нос.

Первую по-настоящему серьезную попытку [37] разобраться с функциями гипоталамуса и гипофиза предпринял немецкий анатом Конрад Шнайдер. В 1655 году он вступил в спор с Галеном, указав, что выделения из носа происходят из слизистой оболочки, а вовсе не из гипофиза. Неопровержимо доказал утверждение Шнайдера Ричард Лоуэр из Оксфорда. Для этого ему пришлось провести своеобразный эксперимент.

Лоуэр проделал отверстие в черепе теленка и ввел в кровеносные сосуды, отходящие от гипофиза, немного молока. Оно обнаружилось в яремных венах, но во рту и в носу не было ни капли. Когда он повторил опыт с чернилами, произошло то же самое. Опыт оказался настолько убедительным, что от галеновских идей, переживших 15 столетий, отказались всего за два десятка лет.

Правда, после этого яркого эксперимента о гипоталамусе и гипофизе снова позабыли: в XVIII веке их никто не изучал. Исследователи XIX века тоже ограничились тем, что уточнили анатомические границы гипоталамуса и гипофиза и описали строение сосудистой сети, снабжающей их кровью.

Первые достоверные изображения гипоталамуса, гипофиза и снабжающих их кровью вен появились в XVI веке – их можно найти в первом настоящем анатомическом атласе De humani corporis fabrica легендарного анатома Андреаса Везалия.

Возможно, что иллюстрациями Везалия вдохновлялся итальянский художник Микеланджело Буонарроти. На эту мысль исследователей творчества Буонарроти натолкнула деталь фрески «Сотворение Адама». Бог, дарующий Адаму способность к духовной жизни, изображен на фоне тени, форма которой напоминает срез головного мозга. Если присмотреться, на этом срезе можно различить силуэты гипоталамуса и гипофиза.

Зачем нужны эти участки мозга и как именно они работают, никто даже не догадывался.

Так могут ли нейроны создавать гормоны?

Ответ на этот вопрос искали многие ученые, и все они внесли в исследования важный вклад. Но ключевую роль сыграли трое исследователей, которым пришлось работать в очень непростое время: сначала в нацистской Германии, а потом – в чужой стране. В наши дни их история читается почти как детектив.

Эрнст Шаррер: загадочные гранулы в нейронах гипоталамуса

В 1927 году молодой исследователь из Мюнхенского университета Эрнст Шаррер (1905–1965) набирал материал для своей докторской диссертации. Рассматривая под световым микроскопом нервные клетки гипоталамуса рыбы (европейского гольяна), молодой человек обратил внимание, что некоторые нейроны отличались от соседних [38]. В цитоплазме необычных нервных клеток можно было различить гранулы, тогда как в других нейронах их не было.

В 1928 году Шаррер опубликовал статью, в которой предположил, что в гранулах необычных нейронов гипоталамуса – он назвал их нервно-эндокринными клетками – на самом деле находятся гормоны. Другими словами, он выдвинул гипотезу о том, что нервные клетки могут выполнять еще и эндокринную функцию. А еще ему принадлежит идея, что нервно-эндокринные клетки могут иметь отношение к секреции гормонов гипофиза.

Сегодня мы знаем, что молодой ученый был прав и в том и в другом. Но для начала XX века это было весьма радикальное предположение. В то время в науке безраздельно царило убеждение, что между нервной и эндокринной функциями не может быть ничего общего. Самые авторитетные ученые были уверены, что нервная функция – чисто электрическое явление [39]. И это логично, ведь о существовании химических нейромедиаторов, при помощи которых нейроны обмениваются информацией, никто пока даже не подозревал.

Тем не менее немецкий «Журнал сравнительной физиологии» статью все-таки напечатал. Но всем, и в первую очередь молодому автору, было ясно, что гипотеза, еще и такая дерзкая, нуждается в серьезной проверке и весомых доказательствах.