Стренк приводит изменение линий тока в зависимости от высоты установки мешалки в аппарате [27,с.104]:
Для шнековой мешалки Ф. Стренк также приводит линии тока [27,с.65]:
Используя данные и направлении токов для различных мешалок в зависимости от геометрических параметров применяемого аппарата должен выполняться подбор мешалки.
Перечень конструкций корпусов аппаратов, в которых устанавливаются мешалки, приводит Стренк [27,с.68]:
Траектория после пропеллерного устройства по данным работы Прандтля [33,с.304]:
Лопасти мешалки вступают в контакт с жидкостью поочередно. На границе лопасти происходит образование поверхности раздела. Вода между лопастями имеет скорость равную скорости лопаток, затем после выхода перемешиваясь в объеме аппарата, скорость снижается. В практике изучение перемешивающих устройств анализировалось распределение и перемешивание потоков, но не выход с лопаток мешалки. Анализ направления выхода потоков струй с лопасти позволит создавать траектории потока с заданной геометрией, а не фиксировать завихрения после той или иной мешалки.
Теория гребного винта отличается от теории крыла тем, что лопасти винта описывают винтовые линии при движении вперед, а крыло движется только вперед.
В случае гребного винта вращение снижает КПД, но в случае мешалки, вращение необходимо для перемешивания. И возникает проблема эффективного рассеяния энергии в объеме аппарата. Та энергия, которая теряется для винта, для мешалки не теряется и должна использоваться для интенсификации процесса. Однако, решение о возможности перемешивания соосными мешалками противоположного вращения без закручивания будет представлено ниже.
Васильцов [1,с.82] приводит эпюру поля скоростей для лопастной мешалки и аппарата без отражательных перегородок:
Также Васильцов приводит [1,с.100] эпюру поля скоростей для турбинной мешалки и аппарата с отражательными перегородками:
Для оценки гидродинамического режима перемешивания анализируется профиль скорости.
В работе [28,с.22] рекомендуется подбирать мешалки в зависимости от режима движения жидкости при перемешивании. В этой же работе [28,с.23] отмечается, что различие в условиях перемешивания между мешалками может быть скомпенсировано частотой вращения и диаметром мешалки. Авторы приводят пример, по которому для трёхлопастной и турбинной мешалки равного диаметра для одинакового режима движения взвешенных частиц, скорость вращения турбинной мешалки должна быть ниже. Результат авторов можно объяснить траекторией линий воздействия лопастей мешалок на жидкость.
__
Мешалки выбираются по АТК 24.201.17-90 или изготавливаются с нестандартными размерами.
Мешалки конструктивно состоят из втулки и установленных на ней лопастей. Поэтому объект мешалки можно рассматривать как базовое устройство с рядом исполнений, получаемых внесением изменений в базовую конструкцию. Например, из лопастной мешалки скручиванием лопастей получается пропеллерная мешалка, открытое пропеллерное насосное колесо, введением дисков и разнесением лопастей получаются турбинные мешалки.
Такая попытка объединить конструкции мешалок позволяет лучше подбирать геометрию мешалки под намеченную структуру потока в аппарате, определяемую направлением отбрасывания жидкости от лопастей мешалки.
– лопастная мешалка с параллельными лопастями оси [20,с.254]:
– трехлопастная (или шести) мешалка с лопастями под углом 30° (получается изменением угла установки лопасти):
– пропеллерная мешалка с лопастью постоянного шага [20,с.256] (получается изменением шага лопасти):
изменение геометрии пропеллеров по Прандлю [33] (воздушный винт, тихоходный гребной винт, быстроходный гребной винт):
Как можно видеть, пропеллерная мешалка из винтов, представленных Прандтлем, занимает промежуточную конфигурацию между тихоходным и быстроходным гребными винтами.
– якорная, рамная и листовая мешалки с увеличенными лопастями (получается увеличением размеров лопасти):
– турбинная мешалка [20,с.257] (получается разнесением лопастей от втулки и введением диска):
– зубчатая мешалка (получается введением вместо лопастей диска с загнутыми зубьями, выполняющими роль лопастей):
Рабочие колеса насосов [29,с.19]:
Колеса насосов по данным [29,с.328]:
Геометрия колес насосов отличается в зависимости от коэффициента быстроходности, определяемого по формуле [29,с.328]:
Для колес насосов с изменением направления подачи жидкости с радиального на осевое и изменением коэффициента быстроходности видно изменение геометрических размеров колес.
Прандтль отмечает [33], что в осевых насосах рабочие колеса схожи с гребными винтами, а, следовательно, и с пропеллерными и лопастными мешалками. Центробежные колеса имеют существенные отличия по геометрии.
__
Перемешивание без закручивания потока соосными мешалками
В работах [14], [15] Ефановым К.В. показано перемешивающее устройство, использующее эффект от противоположного вращения пропеллерных мешалок, ранее применяемый только в гребных винтах судов и на воздушных авиационных винтах.
В случае гребного винта энергия, теряемая на закручивание снижает КПД винта. Для мешалки эта энергия не теряется, а должна быть эффективно распределена в перемешиваемом объеме так как вращательное движение необходимо для перемешивания, но должно быть ограничено во избежание образования воронки. Представим ниже вариант мешалки, позволяющий реализовать перемешивание без закручивания потока.
В существующих подходах к устранению закручивания используются отражательные перегородки, направляющие цилиндры и другие аналогичные решения. Отражательными перегородками можно изменить структуру потока увеличением осевой скорости. Соосный тандем работает в режиме осевого насоса и тем самым при отсутствии других компонент в скорости, осевой поток наиболее мощный. Для процессов перемешивания мешалками закручивание потока является следствием конструкции самой мешалки, ее лопастей, а именно распределением компонент скоростей, сообщаемых потоку лопастью. Следовательно, устранением причины закручивания в конструкции самого перемешивающего устройства, можно устранить закручивание потока как следствие. Результатом устранения закручивания является возможность проведения процесса
перемешивания в более интенсивном режиме, улучшение стабильности работы перемешивающего устройства за счет устранения гироскопического и реактивного моментов, повышение КПД механической части устройства.
Новый физический принцип и параметры процесса перемешивания.
Покажем влияние и возможность использования эмерджентного и синергетического эффектов на энергетические параметры процесса и характеристики устройства перемешивания.
Интенсивность процесса перемешивания мешалкой можно оценить временем пребывания и потребляемой мощностью. Параметр потребляемой мощности, затрачиваемой на перемешивание, непосредственно связан с параметром КПД устройства. КПД непосредственно для перемешивающего устройства характеризует его эффективность по передаче механической энергии потоку. По данным [1] КПД пропеллерной мешалки приблизительно составляет 0,61.
Производительность мешалки можно характеризовать насосным эффектом (радиальным и осевым) а также кратностью перемешивания (отношением насосного эффекта к объему аппарата).
Для лопастного устройства по теории идеального винта потеря КПД происходит при закручивании потока и трении на лопастях. Очевидно, что при устранении закручивания потока вырастет и КПД устройства. И также очевидно, что закручивание потока не является неизбежным при перемешивании в случае применения соосного тандема мешалок противоположного вращения. Для воздушных винтов отсутствие закручивания на выходе показано в работе. Для гребных винтов в работе показан более высокий КПД соосного тандема по сравнению с суммарным КПД двух
составляющих винтов по-отдельности. Осевой эффект (тяга) для перемешивающего устройства особенно важен в процессах перемешивания, в начале которых необходим подъем со дна аппарата твердых частиц. Осевая тяга соосного тандема авиационных винтов выше суммарной тяги двух составляющих винтов по-отдельности (синергетический эффект), что может быть применено для процессов перемешивания.
__
Двухрядные перемешивающие устройства можно условно разделить по критерию организации вращения взаимного вращения мешалок на два типа: мешалки с совпадающим направлением и с противоположным направлением вращения вокруг оси вала. Мешалки первого типа устанавливаются на одном валу, как правило сплошного сечения, вращаемым одним мотор-редуктором. Мешалки второго типа устанавливаются на коаксиальных валах (внутренний сплошного сечения, наружный полый). Привод коаксиальных валов может быть, как через планетарный редуктор от одного мотор-редуктора, так и от двух мотор-редукторов.
Конструкция с двумя мотор-редукторами позволяет организовать вращение мешалок в одинаковом или противоположном направлении, а также изменять скорость вращения одной
из мешалок тандема, не меняя скорость вращения другой.
Схема привода коаксиального вала с планетарным редуктором позволяет настроить взаимные параметры мешалок для работы в едином тандеме для получения наилучшей гидродинамической картины. В авиационной технике и судах основной акцент внимания смещен на само лопастное устройство, его КПД, эффективность, устранение закручивания потока на выходе для снижения гироскопических и реактивных моментов. В химических перемешивающих устройствах
внимание уделяется структуре перемешиваемого потока, и геометрия лопастей с другими параметрами мешалки оптимизируются для получения нужного «отклика» потока на выходе. Принципиальные отличия потока состоят в том, что внутри сосуда линии тока образуют про-
странственный замкнутый контур, а для гребных или воздушных винтов линии тока потока не замкнуты. Но эффективность одиночного винта или пропеллерной мешалки можно оценить по единым критериям потери КПД за счет закручивания потока на выходе с лопасти.