: А обучение с подкреплением в эту категорию попадает?
Я. Л.: Нет, это совсем другая категория. По сути, выделяют три основные категории: обучение с подкреплением, обучение с учителем и самообучение.
Обучение с подкреплением происходит методом проб и ошибок и хорошо работает для игр, где можно делать сколько угодно попыток. Хорошая производительность AlphaGo была достигнута после того, как машина сыграла больше игр, чем все человечество за последние три тысячи лет. К задачам из реального мира такой подход нецелесообразен.
Человек может научиться водить автомобиль за 15 часов тренировок, ни во что не врезавшись. Если использовать существующие методы обучения с подкреплением, машине, чтобы научиться ездить без водителя, придется 10 тысяч раз упасть с обрыва, прежде чем она поймет, как этого избежать.
М. Ф.: Мне кажется, что это аргумент в пользу моделирования.
Я. Л.: Скорее, это подтверждение того, что тип обучения, которым пользуются люди, сильно отличается от обучения с подкреплением. Это похоже на обучение с подкреплением на базе моделей. Ведь человек, садясь за руль впервые, имеет модель мира и может предсказывать последствия своих действий. Как заставить машину самостоятельно изучать прогностические модели – это главная нерешенная проблема.
М. Ф.: Именно с этим связана ваша работа в Facebook?
Я. Л.: Да, это одна из вещей, над которыми мы работаем. Еще мы обучаем машину наблюдать за разными источниками данных. Строим модель мира, надеясь на отражение в ней здравого смысла, чтобы потом использовать ее как прогностическую.
М. Ф.: Некоторые считают, что одного глубокого обучения недостаточно, и в сетях изначально должна быть структура, отвечающая за интеллект. А вы, похоже, убеждены, что интеллект может органически появиться из относительно универсальных нейронных сетей.
Я. Л.: Вы преувеличиваете. С необходимостью структуры согласны все, вопрос в том, как она должна выглядеть. А говоря о людях, которые считают, что должны быть структуры, обеспечивающие логическое мышление и способность к аргументации, вы, вероятно, имеете в виду Гари Маркуса и, возможно, Орена Этциони. С Гари мы спорили на эту тему сегодня утром. Его мнение не очень хорошо воспринимается в сообществе, потому что, не сделав ни малейшего вклада в глубокое обучение, он критически писал о нем. Орен работал в этой сфере некоторое время и при этом высказывается значительно мягче.
Фактически, сама идея сверточных сетей возникла как попытка добавить в нейронные сети структуру. Вопрос в том, какую: позволяющую машине манипулировать символами или, например, соответствующую иерархическим особенностям языка?
Многие мои коллеги, в том числе Джеффри Хинтон и Иошуа Бенджио, согласны с тем, что рано или поздно мы сможем обойтись без структур. Они могут принести пользу в краткосрочной перспективе, потому что пока не придуман способ самообучения. Этот момент можно обойти, привязав все к архитектуре. Но микроструктура коры, как визуальной, так и префронтальной, кажется полностью однородной.
М. Ф.: А мозг использует что-то похожее на метод обратного распространения ошибки?
Я. Л.: Это неизвестно. Может оказаться, что это не обратное распространение в том виде, как мы его знаем, а похожая на него форма аппроксимации оценки градиента. Над биологически правдоподобными формами оценки градиента работал Иошуа Бенджио. Существует вероятность того, что мозг оценивает градиент какой-либо целевой функции.
М. Ф.: Над какими еще важными вещами ведется работа в компании Facebook?
Я. Л.: Мы занимаемся множеством фундаментальных исследований, а также вопросами машинного обучения, поэтому в основном имеем дело с прикладной математикой и оптимизацией. Ведется работа над обучением с подкреплением и над так называемыми порождающими моделями, которые представляют собой форму самообучения или предвосхищающего обучения.
М. Ф.: Разрабатывает ли компания Facebook системы, умеющие поддерживать разговор?
Я. Л.: Фундаментальные темы исследований я перечислил выше, но есть еще и множество областей их применения. Facebook активно ведет разработки в области компьютерного зрения, и можно утверждать, что у нас лучшая в мире исследовательская группа. Мы много работаем и над обработкой текстов на естественном языке. Сюда относится перевод, обобщение, категоризация (выяснение, о какой теме идет речь) и диалоговые системы для виртуальных помощников, систем вопросов и ответов и т. п.
М. Ф.: Как вы думаете, появится ли однажды ИИ, который сможет пройти тест Тьюринга?
Я. Л.: В какой-то момент это случится, но я не считаю тест Тьюринга хорошим критерием: его легко обмануть, и он в некоторой степени устарел. Многие забывают или отказываются верить, что язык – это вторичное явление по отношению к интеллекту. Посмотрите на орангутанов. Они в изрядной степени обладают здравым смыслом, имеют хорошие модели мира и могут создавать инструменты, как люди. Но при этом у них нет языка. Они не социальные животные и едва взаимодействуют с другими представителями вида, если не брать невербальное общение матери и детеныша. Существует целый пласт интеллекта, не имеющий ничего общего с языком. И сводя проверку ИИ к прохождению теста Тьюринга, мы этот пласт игнорируем.
М. Ф.: Какие препятствия стоят на пути к созданию сильного ИИ?
Я. Л.: Я думаю, что мы пока не видим всего массива проблем, с которым нам предстоит столкнуться в процессе работы. Но первым делом нужно выяснить, каким способом дети и животные в первые дни, недели и месяцы жизни познают устройство мира.
Именно в это время ребенок узнает, что мир трехмерен. Замечает, что при движении головой объекты перемещаются перед ним. Получает представление о постоянстве предметов, когда видит, что спрятанный объект никуда не исчезает. Постепенно узнает о существовании гравитации, инерции и жесткости – это базовые свойства, которые постигаются в основном путем наблюдения. У младенца нет средств воздействия на мир, но он много наблюдает и получает при этом огромное количество информации. Это делают и детеныши животных, но больше следуют инстинктам. Пока мы не выясним, как провести такое обучение, к созданию сильного ИИ не приблизимся. Есть и технические подзадачи, в которые я не буду углубляться, например предсказание в условиях неопределенности, но они уже вторичны.
М. Ф.: Но вы считаете, что сильный ИИ достижим?
Я. Л.: Конечно.
М. Ф.: И он обязательно появится?
Я. Л.: Я в этом не сомневаюсь.
М. Ф.: У него будет сознание или же это будет зомби, не имеющий сознательного опыта?
Я. Л.: Мы понятия не имеем, что такое сознание. Более того, я считаю, что в итоге вопрос наличия сознания окажется непринципиальным. Еще в XVII в., когда люди поняли, что на сетчатке глаза формируется перевернутое изображение, они были озадачены тем, что мы видим все неперевернутым. Когда поняли, как именно обрабатывается картинка, оказалось, что на самом деле не имеет значения, в каком порядке идут пикселы. Здесь то же самое. Я считаю сознание субъективным опытом, который появляется как побочный продукт интеллекта.
Есть несколько гипотез о том, как возникает иллюзия наличия сознания. По крайней мере, я считаю это иллюзией. Например, в префронтальной коре мозга есть механизм, позволяющий людям моделировать мир. Заметив какую-то ситуацию, мы подстраиваем под нее модель мира. Сознательное состояние – это своего рода форма внимания. Если бы наш мозг был больше и имел набор из нескольких механизмов для моделирования мира, мы обладали бы другим сознанием.
М. Ф.: Давайте поговорим о том, какие опасности несет ИИ. Считаете ли вы, что мы на пороге экономического спада с массовым исчезновением рабочих мест?
Я. Л.: Эти вопросы меня тоже интересуют, хотя я и не экономист. Экономисты называют ИИ технологией общего назначения (general-purpose technology, GPT). С их точки зрения эта технология затронет всю экономику, как электричество или паровой двигатель.
Меня беспокоит проблема безработицы. Технологии развиваются быстрее, чем у населения появляются навыки, необходимые в новой экономической модели. Но экономисты утверждают, что скорость распространения технологий фактически ограничена долей людей, которые не умеют ими пользоваться. Другими словами, имеет место саморегуляция: чем больше людей остается не у дел, тем медленнее распространяются технологии. Вспомните, как обстояли дела с компьютерными технологиями.
М. Ф.: Но можем ли мы опираться на исторические случаи, рассматривая машины, у которых будут когнитивные способности? Мне кажется, на этот раз человечеству грозит более серьезный кризис.
Я. Л.: Я не думаю, что появление ИИ приведет к массовой безработице. Конечно, сейчас экономический ландшафт сильно изменился. Сто лет назад большая часть населения работала на полях, а теперь этим занимается 2 %. Как сказал один экономист, «перед нами всегда будут проблемы, которые нужно решать, а значит, работа не закончится». Грядущие ИИ-системы усилят человеческий интеллект так же, как механические машины увеличили физическую силу.
М. Ф.: Думаю, для водителей или работников фастфуда переход получится болезненным.
Я. Л.: Надо учитывать, что ценность товаров и услуг тоже поменяется. Все, произведенное машиной, станет дешевле, а сделанное людьми – дороже.
Например, проигрыватель Blu-Ray можно купить за 46 долларов. Если подумать о том, какая сложная технология лежит в его основе, цена кажется безумно низкой. Это «синие» лазеры, которых не было 20 лет назад. Невероятно точный сервомеханизм, обеспечивающий позиционирование лазера с точностью до микрона. Сжатие видео H.264 и сверхбыстрые процессоры. Но он стоит 46 долларов, потому что в основном производится машинами. Теперь зайдите в интернет и найдите керамическую салатницу ручной работы. Технологии производства керамики 10 тысяч лет, но по первым же ссылкам вы найдете товар, который стоит примерно 500 долларов.