Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей — страница 24 из 63

М. Ф.: Чем ваш проект AI Fund отличается от множества других венчурных компаний?

Э. Ы.: Венчурные фонды пытаются определить, насколько успешным может стать предлагаемый вариант бизнеса, и на этой основе принимают решения. Мы же создаем успешные бизнесы. Наша специализация – построение с нуля. Мы работаем с совершенно новыми командами, наставляем и поддерживаем их. От тех, кто заинтересован в работе с нами, не требуется исчерпывающей информации, достаточно резюме. Идея стартапа реализуется после начала совместной работы.

М. Ф.: К вам приходят люди с готовыми идеями или вы всегда помогаете с разработкой концепции?

Э. Ы.: Если человек принесет свою идею, мы с удовольствием ее обсудим, но у нас есть длинный список многообещающих идей, для которых нужны исполнители. И мы всегда рады ими поделиться.

М. Ф.: То есть вы привлекаете талантливых людей, предлагая возможность и инфраструктуру для стартапа?

Э. Ы.: Именно так. Хотя, конечно, для создания успешной компании требуется не только талант в сфере ИИ. Технологии уделяется так много внимания, потому что она очень быстро развивается. Но для формирования сильной команды нужен целый набор навыков: знание технологии, умение строить бизнес-стратегии, разрабатывать и продвигать продукт и развиваться. Мы создаем вертикально интегрированные компании.

М. Ф.: Кажется, любой стартап в сфере ИИ, демонстрирующий реальный потенциал, приобретается одним из технологических гигантов. Есть ли у современных стартапов шансы дойти хотя бы до первичного публичного предложения?

Э. Ы.: Я очень надеюсь, что какие-то ИИ-стартапы смогут продолжить самостоятельное существование. На самом деле мы не ставим перед собой финансовых целей, хотелось бы просто сделать что-то полезное. И грустно думать, что руководители всех успешных стартапов рано или поздно продадут свое детище.

М. Ф.: В последнее время все чаще идут разговоры о том, что успехи глубокого обучения преувеличены. Говорят даже о новой «зиме ИИ». Насколько это соответствует реальности и есть ли риск уменьшения инвестиций в эту сферу?

Э. Ы.: Я сильно сомневаюсь в наступлении очередной «зимы ИИ», но снизить ожидания относительно сильного ИИ однозначно стоит. Предыдущие «зимы» сопровождались ажиотажем по поводу новых технологий, которые не были такими уж полезными и принесли меньшую выгоду, чем ожидалось. Рост количества проектов, специалистов и компаний, работающих с глубоким обучением, означает, что сегодня эта сфера приносит доход. Инвестиции в глубокое обучение идут непрерывно. Поддержка со стороны крупных компаний базируется не на надеждах и мечтах, а на достигнутых результатах.

М. Ф.: То есть если не брать в расчет ожидания относительно сильного ИИ, вы думаете, что нас ждет прогресс в сфере глубокого обучения и новые специализированные приложения на базе этой технологии?

Э. Ы.: Современный ИИ сильно ограничен. Кроме того, сам термин описывает очень широкий набор понятий, и я думаю, что при обсуждениях ИИ в большинстве случаев подразумеваются такие инструменты, как метод обратного распространения, обучение с учителем и нейронные сети.

Он ограничен так же, как интернет или электричество. От того, что доступ к электричеству превратился в коммунальную услугу, проблемы человечества не исчезли. Не стоит ждать этого и от метода обратного распространения, несмотря на всю его эффективность. Но ясно, что от нейронных сетей, обученных с помощью этого метода, мы получили далеко не всё.

Иногда мои выступления на тему ИИ начинаются с фразы: «ИИ не волшебная палочка, он не может делать все». Странно, что в современном мире до сих пор кто-то верит во всемогущество технологий. Мы достигли огромных успехов в узком ИИ, и сильно продвинулись в общем ИИ, но обе эти вещи обозначаются одним термином. В итоге экономические блага, которые удалось получить благодаря узкому ИИ, формируют ошибочное мнение о прогрессе в общем или даже сильном ИИ. А здесь пока хвастаться нечем.

М. Ф.: Смогут ли нейронные сети обеспечить постоянный прогресс в сфере ИИ или же потребуется гибридный подход, включающий идеи из других областей, например символической логики?

Э. Ы.: В компании Landing AI при создании решений для промышленных партнеров постоянно используются гибридные инструменты. При работе с небольшими наборами данных часто приходится комбинировать методики глубокого обучения, например, с традиционными инструментами компьютерного зрения. Специалист в сфере ИИ должен понимать, в каких случаях лучше воспользоваться набором методов и как их оптимальным образом скомбинировать. Это что касается быстрой разработки полезных приложений.

Но если смотреть в долгосрочной перспективе и предположить, что мы все-таки сможем приблизиться к интеллекту уровня человека, скорее всего, произойдет сдвиг в сторону нейронных сетей. Мне кажется, что будут придуманы алгоритмы, намного превосходящие метод обратного распространения.

М. Ф.: То есть вы считаете нейронные сети лучшей технологией для прогресса в сфере ИИ?

Э. Ы.: Я думаю, что в обозримом будущем центральное место займут именно они. Достойной альтернативы нейронным сетям я пока не вижу, но это не значит, что она никогда не появится.

М. Ф.: Джуда Перл убежден, что для прогресса в сфере ИИ нужна модель, учитывающая причинно-следственные связи. Вы с этим согласны?

Э. Ы.: Есть множество вещей, которых глубокое обучение не делает. Учет причинности – одна из них. Кроме того, нужно учиться работать с небольшими наборами данных, совершенствовать многозадачное обучение, отказаться от меток. Как видите, у метода обратного распространения много недостатков, которые не мешают продвигаться вперед, но над их устранением нужно работать.

М. Ф.: Я видел исследование, показывающее, что сети глубокого обучения легко обмануть с помощью сфабрикованных данных.

Э. Ы.: Да, и это большая проблема. В Baidu мы постоянно боролись с атаками на ИИ-системы и с попытками мошенничества.

М. Ф.: Что вы думаете о проблеме конфиденциальности? Например, в Китае сейчас повсеместно начинает внедряться технология распознавания лиц.

Э. Ы.: Я не эксперт в этой области, поэтому просто озвучу наиболее близкую мне точку зрения. Развитие технологий дает потенциал для концентрации влияния. Так было с интернетом. Власть оказывается у корпораций или правительства, и небольшая группа людей получает возможность влиять на остальных.

Современные технологии позволяют, к примеру, влиять на результаты голосования, что заставляет беспокоиться о будущем демократии. Конечно, на недавних выборах в США применялись в основном интернет-технологии, а до этого огромное влияние оказывало телевидение. Поэтому нужна постоянная готовность противодействовать злоупотреблениям.

М. Ф.: Расскажите об одном из самых популярных приложений ИИ: беспилотных автомобилях. Когда, по вашему мнению, эта услуга станет общедоступной?

Э. Ы.: Я думаю, что в геозонах беспилотные автомобили появятся сравнительно быстро, возможно, уже к концу этого года, но на дорогах общего пользования вы их увидите нескоро.

М. Ф.: Под геозоной вы подразумеваете заранее нанесенные на карту маршруты?

Э. Ы.: Да. Некоторое время назад мы с коллегой написали статью для журнала Wired[15], в которой предложили вариант внедрения беспилотных автомобилей. Для их массового использования требуются как инфраструктурные, так и социально-правовые изменения.

Мне посчастливилось более 20 лет наблюдать, как развивалась эта индустрия. Еще студентом я видел, как Дин Померло обучал автономный автомобиль, в котором был установлен следивший за дорогой компьютер. Но эта великолепная технология нуждалась в доработке. Затем в 2007 г. в Стэнфорде я участвовал в конкурсе роботов-автомобилей DARPA Urban Challenge.

В Викторвилле я впервые видел столько беспилотных автомобилей одновременно. Всю команду Стэнфорда просто заворожили машины, мчавшиеся без водителей. Но, что интересно, через пять минут это зрелище стало настолько привычным, что мы отвернулись и принялись беседовать.

М. Ф.: Расскажите, когда начнет использоваться технология компании Drive.ai?

Э. Ы.: Этот сервис уже работает в Техасе. Можно даже посмотреть, что происходит в текущий момент. Вот я вижу, что кто-то использует одно такси. Мне нравится, что это становится обыденностью. Человек вызывает такси, чтобы поехать по своим делам, и к нему приезжает автомобиль без водителя.

М. Ф.: Совпадают ли темпы прогресса в сфере беспилотных автомобилей с вашими ожиданиями?

Э. Ы.: В публичных выступлениях некоторые компании называли нереалистичные сроки появления беспилотных автомобилей на дорогах общего пользования. И хотя я уверен, что эти автомобили изменят нашу транспортную систему в лучшую сторону, мне крайне не нравится ажиотаж, который создают физически невыполнимые обещания.

М. Ф.: Должно ли правительство регулировать использование беспилотных автомобилей и ИИ в целом?

Э. Ы.: Автомобильная промышленность всегда жестко регулировалась для обеспечения безопасности, но массовое использование беспилотных автомобилей потребует дополнительного регулирования. Страны, которые тщательно пропишут правила пользования, быстрее смогут предоставить доступ к услугам здравоохранения, транспорта или образования на базе ИИ. Страны, где этому аспекту не уделяется достаточно внимания, рискуют остаться позади.

При этом регулировать нужно отдельные сферы применения ИИ, а не ИИ в целом. Это будет способствовать росту самих сфер и позволит искать оптимальные ИИ-решения для каждого конкретного случая. Я считаю, что любой технологический прорыв нуждается в регулировании со стороны правительства. Например, в Сингапуре каждому пациенту присваивается уникальный идентификатор, и все медицинские записи сведены в одну общую систему. Разумеется, в большой стране организовать подобное сложнее, но такие вещи сильно влияют на работу системы здравоохранения.