Астрономия. Популярные лекции — страница 8 из 45

Орбитальные параметры

Когда небесные механики интересуются движением тел, они используют специальную систему координат. В принципе, можно было бы ничего не изобретать и взять декартовы координаты. Что нам нужно задать для частицы, чтобы потом рассчитывать движение по орбите? Начальное пространственное положение частицы и ее начальную скорость. Это векторные величины в пространстве, т. е. каждая их них имеет три компонента. Итого шесть чисел полностью описывают состояние частицы в пространстве. Больше ничего не требуется, у нас есть формула для вычисления гравитационной силы, действующей на небесное тело, и законы механики позволяют нам рассчитать, как она будет двигаться, т. е. положение и скорость в любой момент времени.

Но реально для небесной механики такой подход чаще всего не реализуется: он слишком сложен. Ведь если у нас есть только один тяготеющий центр, то любая отпущенная на свободу частица, какую бы скорость мы ей первоначально ни задали, под действием гравитации будет летать в плоскости и никуда из этой плоскости не выйдет. Иными словами, у любой частицы есть своя орбитальная плоскость. Вот с ней и любят работать небесные механики, потому что она сразу уменьшает количество пространственных измерений. По крайней мере на одно: если мы знаем, что тело движется в плоскости, то перпендикулярную ей компоненту скорости и расстояние можно отбросить. А чем меньше уравнений, тем легче решать.

Но надо задать, как орбитальная плоскость рассматриваемого объекта располагается в пространстве (рис. 2.12). Для этого, естественно, сначала выбирается базовая координатная плоскость, от которой ведется отсчет (обычно это плоскость эклиптики Солнечной системы). Чтобы описать, как в пространстве располагается орбитальная плоскость относительно базовой, надо определить угол, под которым они пересекаются. Этот угол называется наклонением.

Рис 2.12. Элементы орбиты: ☊ и ☋ — восходящий и нисходящий узлы орбиты; i — наклонение; Ω — долгота восходящего узла (из южного полушария в северное); ω — угловое расстояние от восходящего узла до перицентра.


Важно не запутаться в терминах, потому что астрономы употребляют два похожих слова: «наклонение» и «наклон», которые означают вовсе не одно и то же. В отличие от наклонения, наклоном называют угол между осью собственного вращения планеты и перпендикуляром к ее орбитальной плоскости (например, наклон земной оси равен 23,4°). Пересечение орбитальной и базовой плоскостей называется линией узлов. Эта прямая проходит через два узла: восходящий и нисходящий. Восходящий узел — точка, где планета из южной полусферы неба переходит в северную, а нисходящий — где планета «ныряет» из северного полушария в южное. Обозначаются они соответственно символами ☊ и ☋.

Второй параметр, который надо указать для небесных координат, определяет ориентацию линии узлов в пространстве. Базовое направление мы можем задать на точку весеннего равноденствия, Солнце проходит через нее каждый год. Угол Ω между линией узлов и базовым направлением называется долготой восходящего узла.

Итак, орбитальную плоскость, наклонение и ориентацию мы определили. Теперь надо определить характер движения планеты в этой плоскости. В простейшем случае, когда система состоит из одной звезды и одной планеты, она движется по эллипсу, а у эллипса есть лишь две характеристики: размер и форма. Размер — это длина большой оси, а форму можно определить через параметр эксцентриситет.

Четыре параметра у нас есть — вроде бы достаточно? Ан нет! Как ориентирован в орбитальной плоскости сам эллипс? Надо указать угол его ориентации — например, между линией узлов и направлением на перицентр Π (точку орбиты, ближайшую к центру притяжения).

Итак, пять параметров указали; можем ли мы наконец произвести расчет движения планеты в будущее и в прошлое? Нет, нам надо знать, где планета на этом эллипсе находится в начальный момент времени, чтобы начать вычисления. Например, можно задать момент времени, когда она проходит через перицентр, апоцентр или какую-то другую определяемую точку, — это уже шестой параметр.

Таким образом, шесть величин задают полный набор начальных условий, ровно столько их было и в декартовых координатах. Но параметры в небесных координатах позволяют проще решать задачу, это можно сделать даже аналитически.

Как летают спутники

Если нам надо рассматривать движение искусственных спутников Земли, то определять базовую плоскость через эклиптику, т. е. брать в качестве базовой плоскость орбиты нашей планеты, особого смысла нет. Ведь спутники всегда летают не очень далеко от Земли, им нет никакого дела до того, как она сама движется вокруг Солнца. Поэтому наклонение плоскости орбиты спутников обычно отсчитывают от земного (он же — небесный) экватора (рис. 2.13). Плоскость земного экватора в этом отношении очень полезна, потому что планета у нас довольно симметрична относительно экватора, что упрощает математические расчеты. Остальные параметры определяют аналогично: например, направление линии узлов отсчитывают, как всегда, от точки весеннего равноденствия.

Теперь давайте посмотрим, как могут двигаться спутники после запуска. Подвешиваем тело над Землей и сообщаем ему импульс. Например, по какой линии движется камень, брошенный под углом к горизонту? Школьный учебник утверждает, что по параболе. Но так ли это?

По этой кривой тела движутся в однородном поле гравитации, когда ускорение свободного падения направлено везде одинаково. Но наша Земля — не плоскость бесконечной протяженности (как ее в древности представляли, лежащей на слонах и китах), а шар, т. е. она притягивает к своему центру как точка (выше мы говорили, что это следует из второй теоремы Ньютона). Поэтому, как бы мы ни кинули тело, оно полетит по эллипсу. Если с маленькой скоростью, то оно упадет, но все равно при этом будет двигаться по дуге эллипса.

Рис. 2.13. Геоцентрическая экваториальная система координат.


Давайте теперь будем бросать тело горизонтально со всё большей и большей скоростью. Сначала оно будет ударяться о поверхность Земли, заканчивая свое эллиптическое движение, при этом точка старта будет апоцентром (наиболее удаленная от центра точка эллипса). При некоторой скорости мы в конце концов добиваемся, чтобы тело летало по круговой орбите. А если придать еще бóльшую начальную скорость, то оно также полетит по эллипсу, только теперь точка старта станет не апо-, а перицентром.

Рис. 2.14. Параметры орбиты искусственного спутника Земли.


Кстати, в сообщениях ТАСС и других СМИ вам никогда не скажут, каково расстояние от перицентра или апоцентра орбиты того или иного спутника до центра Земли. У них своя особенность языка, они говорят в других терминах: «высота полета космического тела» — это расстояние от поверхности. На рис. 2.14 показана взаимосвязь этих величин. Но для физика важно знать истинные параметры эллипса — расстояние от центра тяготения, а значит, надо не забывать всегда прибавлять радиус Земли.

А что будет, если еще больше наращивать скорость (рис. 2.15)? При некоторой скорости мы получим параболическое движение: тело при этом отрывается, уходит в бесконечность и там замирает, потому что в пределе на бесконечном расстоянии скорость будет нулевой. А если задать еще бóльшую начальную скорость, то оно улетает по гиперболе и на бесконечности продолжает двигаться, потому что у него есть запас энергии. И, наконец, если мы метнули это тело с бесконечно большой скоростью, то оно уйдет по прямой линии, вообще «не ощущая» гравитации.

Рис. 2.15. Космические скорости.


Теперь подсчитаем, с какой скоростью надо запустить тело, чтобы оно вышло на круговую орбиту. Если тело движется по кругу, то надо приравнять центростремительное ускорение к отношению силы гравитации к массе тела:

Из этого уравнения получаем выражение для скорости, которая называется первой космической (V1):

Важно подчеркнуть, что это векторная величина, т. е. эту скорость надо сообщить спутнику обязательно в нужном направлении.

Однако в телерепортаже мы видим, что ракета стартует с космодрома всегда вертикально вверх, а потом говорят, что ракета набрала первую космическую скорость и вышла на круговую орбиту вокруг Земли. Что было бы дальше, если бы она набрала первую космическую в вертикальном направлении? Вышла бы она на круговую орбиту? Конечно, нет — она упала бы обратно.

Кстати, понятие первой космической скорости (называемой также круговой скоростью) v₁ определяют не только у поверхности планеты, поэтому всегда надо уточнять — в каком месте. В формулу входит расстояние до центра планеты; подставляйте сюда другие значения — и вы получите разные значения первой космической скорости. У поверхности Земли или на небольшой высоте (150–200 км), где уже почти нет воздуха, она составляет около 8 км/с, но при удалении от Земли уменьшается обратно пропорционально корню из расстояния.

Рис. 2.16. Зависимость формы орбиты от направления начальной скорости (при модуле, равном круговой скорости).


Итак, если мы придали телу первую космическую скорость точно в направлении, перпендикулярном вектору расстояния, то оно выйдет на круговую орбиту (рис. 2.16). Но если вы ошиблись с направлением, то получите вовсе не круг, а эллипс, хотя модуль скорости и был правильным! Это очень большая проблема для инженеров, которые планируют космические запуски: малейшее отклонение — и насмарку все труды: спутник может даже войти в атмосферу Земли и сгореть. Обратите внимание, когда запуск космической ракеты долго показывают: сначала она вертикально уходит в стратосферу, а потом постепенно поворачивает, поворачивает, поворачивает — и на высоте 50–70 км начинает двигаться уже параллельно поверхности Земли, и ей надо набрать соответствующую высоте первую космическую скорость, иначе она упадет обратно на планету.

Для тела, равномерно движущегося по круговой орбите, можно легко записать выражения для его кинетической и потенциальной (гравитационной) энергии: