Атомная физика и человеческое познание — страница 22 из 28

В то время как Планк осторожно ограничился статистическими аргументами и подчеркивал затруднительность отказа от классических принципов детального описания природы, Эйнштейн смело указал на необходимость принимать во внимание квант действия в индивидуальных атомных явлениях. В тот же год, когда он так гармонично достроил здание классической физики, установив теорию относительности, он сделал еще одно открытие. Эйнштейн показал, что для описания наблюдений над фотоэлектрическим эффектом необходимо предположить, что передача энергии к каждому вырванному из вещества электрону соответствует поглощению так называемого кванта излучения. Так как идея о волнах необходима для объяснения распространения света, то не могло быть и речи о том, чтобы просто заменить ее корпускулярными представлениями. Поэтому ученые здесь встретились со своеобразной дилеммой, для разрешения которой требовался тщательный анализ области применимости наглядных представлений.

Как известно, этот вопрос еще больше обострился благодаря открытию Резерфордом атомного ядра. В ядре, несмотря на его малость, заключена почти вся масса атома, а его электрический заряд соответствует числу электронов в нейтральном атоме. Это дало простую картину атома, которая сразу же навела на мысль о применении идей механики и электромагнитной теории. Все же было ясно, что, согласно принципам классической физики, никакая конфигурация электрически заряженных частиц не может обладать устойчивостью, необходимой для объяснения физических и химических свойств атома. В частности, по классической электромагнитной теории всякое движение электронов вокруг атомного ядра должно сопровождаться непрерывным излучением энергии; в результате система станет быстро сжиматься до тех пор, пока электроны не соединятся с ядром, образуя нейтральную частицу исчезающе малых размеров по сравнению с теми, которые следует приписывать атомам. Однако указание на решающее значение кванта действия для устойчивости атомов и их реакции излучения было найдено в эмпирических законах линейчатых спектров элементов, — законах, до тех пор совершенно непонятных.

Исходной точкой стал здесь так называемый квантовый постулат, по которому каждое изменение энергии атома есть результат полного перехода между двумя его стационарными состояниями. Предполагая далее, что всякий атомный акт излучения связан с испусканием или поглощением единичного светового кванта, можно было определить из спектров значения энергии стационарных состояний. Было очевидно, что в рамках детерминистического описания нельзя дать никакого объяснения неделимости процессов перехода и самому их возникновению при данных условиях. Оказалось, однако, возможным, опираясь на так называемый принцип соответствия, получить систематизацию связей электронов в атомах, отражающую многие из свойств веществ. Основываясь на сравнении с ходом процессов, ожидаемым по классической теории, искали указаний для такого статистического обобщения описания, которое было бы совместно с квантовым постулатом. Становилось, однако, все более и более ясным, что для того, чтобы получить непротиворечивый отчет об атомных явлениях, необходимо в еще большей мере отказаться от наглядных представлений и что нужна радикальная переформулировка всего описания, чтобы освободить место для всех тех особенностей явлений, которые связаны с квантом действия.

Решение, достигнутое в результате изобретательных и остроумных догадок многих из самых выдающихся физиков-теоретиков нашего времени, было удивительно просто. Как и при формулировании теории относительности, так и здесь соответствующий аппарат был найден в форме чрезвычайно развитых математических абстракций. Величины, которые в классической физике служат для описания состояния системы, заменяются в квантово-механическом формальном аппарате символическими операторами, коммутативность которых ограничена правилами, содержащими квант действия. Это значит, что таким величинам, как пространственные координаты и соответствующие составляющие количества движения частиц, нельзя одновременно приписывать определенные значения. Таким образом, статистический характер формального аппарата выступает как естественное обобщение описания классической физики. Кроме того, это обобщение сделало возможным логически последовательное формулирование закономерностей, ограничивающих индивидуальность тождественных частиц; закономерности эти, как и самый квант, не могут быть выражены на языке обычных физических наглядных представлений.

При помощи методов квантовой механики удалось объяснить большое количество опытных фактов, относящихся к физическим и химическим свойствам веществ. Не только были объяснены во всех деталях связи электронов в атомах и молекулах, но и удалось также глубоко проникнуть в строение и реакции атомных ядер. В связи с этим мы можем упомянуть о том, что вероятностные законы для спонтанных радиоактивных превращений были гармонично включены в статистическое квантово-механическое описание. При изучении превращений атомных ядер при высоких энергиях наблюдены за последние годы новые элементарные частицы; понимание свойств этих частиц продвинулось далеко вперед в результате приспособления формального аппарата к требованиям инвариантности, вытекающим из теории относительности. Все же здесь перед нами встают новые проблемы; решение их, очевидно, требует дальнейших абстракций, которые позволили бы сочетать квант действия с элементарным электрическим зарядом.

Несмотря на всю плодотворность квантовой механики, охватившей такую обширную область опытных фактов, отказ от привычных требований, предъявлявшихся к физическому описанию, заставил многих физиков и философов сомневаться в том, что мы имеем здесь дело с исчерпывающим описанием атомных явлений. В частности, высказывалось мнение, что статистический способ описания должен рассматриваться как временный выход из положения, но что в принципе он может быть заменен детерминистическим описанием. Тщательное обсуждение этого вопроса привело, однако, лишь к разъяснению нашего положения в атомной физике как наблюдателей; это и дало нам тот гносеологический урок, о котором упоминалось в начале доклада.


Поскольку задачей науки является увеличение и упорядочение нашего опыта, всякий анализ возможностей и предпосылок человеческого познания должен опираться на рассмотрение характера и полноты наших способов общения. Основой, конечно, является язык, выработанный для ориентировки в окружающем и для организации человеческого общества. Однако в результате расширения нашего опыта не раз возникали вопросы о том, достаточно ли тех понятий и идей, которые воплотились в нашем обыденном языке. Благодаря сравнительной простоте физических проблем они особенно подходят для исследования того, как употребляются наши способы общения. В самом деле, развитие атомной физики научило нас тому, как, не отступая от обычного языка, можно создать систему понятий, достаточно общую для исчерпывающего описания новых опытных фактов.

В связи с этим настоятельно необходимо уяснить себе, что во всяком отчете о физическом опыте нужно описывать как условия опыта, так и результаты наблюдения теми же словами и средствами, какие употребляются в классической физике. При анализе отдельных атомных частиц это становится возможным благодаря необратимым усилительным эффектам — таким, как пятно на фотографической пластинке, остающееся после удара о нее электрона, или как электрический разряд, созданный им в счетчике. Тогда наблюдения касаются только того, когда и где была зарегистрирована частица на пластинке или ее энергия при попадании ее на счетчик. Конечно, эта информация предполагает, что положение фотопластинки относительно других частей экспериментальной установки известно; такими частями могут быть направляющие диафрагмы и затворы, которые служат для локализации в пространстве и времени, или же заряженные и намагниченные тела, которые определяют действующие на частицу внешние силовые поля и позволяют делать измерения энергии. Экспериментальные условия можно менять многими способами, но главное здесь в том, что в каждом случае мы должны быть в состоянии передать другим, что мы сделали и что мы узнали; поэтому-то действие измерительных приборов непременно должно описываться в рамках классических физических понятий.

Так как все измерения касаются, таким образом, тел, достаточно тяжелых, чтобы при их описании можно было пренебречь квантом действия, то, строго говоря, в атомной физике нет никакой новой проблемы наблюдения. Возможность строить отчет на измеримых величинах основана на усилении атомных эффектов, которое придает явлениям своеобразный замкнутый характер и вместе с тем подчеркивает необратимость, характерную для самого понятия наблюдения. В рамках классической физики нет принципиальной разницы между описанием измерительных приборов и описанием объектов исследования. Но когда мы изучаем квантовые явления, положение будет совсем иное, поскольку квант действия налагает ограничения на описание состояния системы при помощи пространственно-временных координат и энергетических величин (количества движения и энергии). Так как детерминистическое описание классической физики основано на предположении о неограниченной совместности локализации в пространстве и времени и применения динамических законов сохранения, то мы, очевидно, наталкиваемся здесь на вопрос, можно ли полностью сохранить такое описание в случае атомных объектов.

Для выяснения этого главного пункта роль взаимодействия между объектами и измерительными приборами в описании квантовых явлений оказалась особенно важной. Как подчеркивал Гейзенберг, локализация объекта в ограниченной области пространства-времени влечет за собой, согласно квантовой механике, обмен количеством движения и энергией между прибором и объектом; этот обмен тем больше, чем меньше выбранная область. Поэтому было крайне важно исследовать, насколько при описании явления можно учитывать в отдельности и взаимодействие, возникающее при наблюдении. Этот вопрос был центральным во многих дискуссиях, причем появилось много предложений, имевших целью полное контролирование взаимодействий. Однако в таких рассуждениях н