Строение древних и современных животных. Рисунок Джейми Кэрролл.
Глава 1. Строение животных: современные формы, древние чертежи
Вся сложность заключается в загадочности и красоте органической формы.
Поразительное разнообразие форм встречается не только у животных, обитающих на суше и в море. Под землей, на разной глубине — от нескольких сантиметров в слое песка до сотен метров в каменистых породах — хранится летопись 600 млн лет истории животного мира. Это загадочные первые животные в сланцах Канадских Скалистых гор, это огромные туши динозавров в долинах американского Запада, это зубы и фрагменты черепов наших двуногих предков в Восточно-Африканской рифтовой долине. И кое-что из того, что скрыто под землей, порой оказывается чрезвычайно странным по сравнению с тем, что живет и дышит на земле.
Рис. 1.1. Окаменелости со дна реки Флорида. Кость млекопитающего, фрагменты панциря черепахи и зубы акул. Обратите внимание на разнообразие форм и размеров. Самый большой зуб принадлежат гигантской акуле Charcharadon megalodon. Собрано и сфотографировано Патриком Кэрроллом
Сам я сделал это удивительное открытие лишь недавно, и не где-нибудь, а во Флориде — излюбленном уголке отпускников и пенсионеров, ищущих солнца, развлечений и расслабленного отдыха. Здесь можно увидеть пальмы, прекрасные песчаные пляжи, грациозных пеликанов и скоп, обаятельных ламантинов и дельфинов, а также Homo sapiens в клетчатых шортах... А еще полутораметровых броненосцев, клыкастыхмастодонтов, пятнадцатиметровых акул, верблюдов, носорогов, ягуаров и саблезубых кошек.
Не верится? Это чистая правда. Надо просто знать, где искать.
Отправляйтесь к реке, проложившей себе путь меж песчаных берегов, копните ее дно лопатой — и, возможно, вы обнаружите зубы одного из десяти видов акул: от зазубренного и изогнутого зуба серой акулы до чудовищного пятнадцатисантиметрового клыка давно исчезнувшего монстра Charcharadon megalodon (рис. 1.1). В той же гальке можно отыскать следы недавнего геологического прошлого Флориды — кости тапиров, ленивцев, верблюдов, лошадей, глиптодонтов, мастодонтов, морских коров и других исчезнувших животных.
Такое разнообразие форм ныне живущих и вымерших животных в одном месте заставляет задуматься о двух важных вещах: как возникает неповторимая, индивидуальная форма животного? И откуда взялось столько разнообразных форм?
На первый взгляд может показаться, что вариантов строения животных слишком много. Однако есть несколько давно устоявшихся эволюционных тенденций, определяющих их дизайн, о которых мы и поговорим. В этой главе мы займемся поиском некоторых общих закономерностей строения и эволюции животных, чтобы свести это сбивающее с толку разнообразие к нескольким основным типам.
Строим животных из кубиков
Основная закономерность строения животных становится очевидной уже в тот момент, когда пытаешься понять, что это за кость или зуб ты подхватил лопатой со дна реки во Флориде. Сложность в том, чтобы одновременно определить, какому животному принадлежал этот фрагмент и к какой части тела он относится. Почему это так трудно? На этом примере мы наблюдаем одну из закономерностей строения животных. Близкородственные животные, например, позвоночные, собраны из очень похожих деталей.
Рис. 1.2. Модульное строение позвоночных. Вверху: отпечаток десятисантиметровой саламандры юрского периода. Внизу: скелет пятиметрового зауропода Camarasaurus, также юрского периода. Фото саламандры предоставлено Нилом Шубином из Университета Чикаго, фото зауропода — Музеем естественной истории Карнеги.
Допустим, с небольшой помощью экспертов, нам удалось установить, что фрагмент кости принадлежал вымершей морской корове. Допустим, это ребро. Но какое? А если это фаланга пальца вымершей лошади, то какого именно пальца? Разглядывая отдельные кости, ответить на этот вопрос чрезвычайно сложно. Тут мы сталкиваемся со второй закономерностью строения животных: животные собраны из определенного набора сходных элементов, как будто из кубиков.
Некоторые из этих деталей могут быть небольшими, как фаланги пальцев, другие — огромными, как позвонки некоторых позвоночных. Эти основные элементы очень древние, и их пропорции сохранились у животных самого разного размера. Гигантский динозавр из группы зауропод и маленькая саламандра, жившие во время юрского периода (свыше 150 млн лет назад), демонстрируют одинаковую архитектуру, основанную
На ПОВТОРЯЮЩИХСЯ МОДУЛЯХ (рис 1.2).
Модульный дизайн характерен не только для позвоночных. В знаменитой сланцевой формации Берджес в Канаде обнаружены первые крупные и сложные животные, жившие в морях кембрийского периода свыше 500 млн лет назад. Они демонстрируют все те варианты модульного плана строения, которые характерны и для их современных потомков (рис. 1.3).
Рис. 1.3. Модульная организация животных кембрийского периода. Ayshaeia pedunculata из группы Lobopodia (вверху) и трилобит Olenoides serratus (внизу) состоят из повторяющихся модулей. Фотографии предоставлены Чипом Кларком, Смитсоновский Институт.
Окаменелости привлекают нас по нескольким причинам. Безусловно, мы испытываем восторг и благоговение, когда прикасаемся к вымершим животным, обитавшим в давным-давно исчезнувших мирах. Но, кроме того, нас завораживает их форма. Эти окаменелости демонстрируют сохранившуюся в ходе эволюции тенденцию модульной сборки тел из повторяющихся элементов.
В отдельных частях тела животных также наблюдается модульное строение. Например, наши конечности содержат повторяющиеся элементы: каждая состоит из нескольких частей (бедро, голень, лодыжка; плечо, предплечье, кисть), а кисти и ступни имеют по пять похожих пальцев (рис. 1.4). Модульная структура конечностей четвероногих животных имеет очень древнее происхождение, что со всей очевидностью демонстрируют ископаемые остатки, относящиеся к юрскому периоду.
Рис. 1.4. Модульное строение человеческой руки. Рентгеновский снимок демонстрирует, что все пальцы состоят из сериального набора повторяющихся костных элементов. Фотография предоставлена Джейми Кэрролл.
Иногда модульное строение той или иной структуры неочевидно. Сложный рисунок на крыльях бабочки может показаться беспорядочным, однако при ближайшем рассмотрении выясняется, что узор всегда составлен из повторяющихся мотивов. Нижняя сторона крыла голубой бабочки Morpho имеет повторяющийся рисунок, состоящий из полосок, шевронов (рисунок в виде буквы V) и пятен, и все элементы рисунка разделены жилками крыла (рис. 1.5). Таким образом, каждый элемент крыла, ограниченный крыловыми жилками, можно рассматривать как структурную единицу. А общий узор крыла создается в результате повторения этих модульных единиц, в какой-то степени различающихся размером либо формой линий, шевронов или пятен.
Рис. 1.5. Сериальный повтор элементов на нижней стороне крыла голубой Morpho. Каждое крыло состоит из нескольких субъединиц (модулей), ограниченных двумя жилками и краем крыла. Каждая субъединица содержит вариации на тему одних и тех же элементов рисунка — пятен-глазков, полосок и шевронов. Бабочка — подарок Нипама Патела, фотография Джейми Кэрролл.
Дизайн, основанный на повторяемости элементов, характерен даже для очень мелких и невидимых невооруженным глазом структур. Изумительно красивые крылья бабочек на самом деле состоят из мельчайших чешуек. Каждая чешуйка — вырост, образованный отдельными клетками, выстроенными в множество рядов. Каждая чешуйка имеет свой цвет, и все они, подобно мазкам на картине художника-пуантилиста, складываются в общий рисунок, когда мы охватываем глазом всю картину целиком. Рисунок на теле рыб, змей и ящериц тоже образован чешуйками (не такими, как у бабочек), выстроенными в упорядоченный геометрический узор. Способность чешуек отражать или преломлять свет зависит от еще более тонких деталей клеточной микроанатомии, определяющей длину волны поглощенного или отраженного света (рис. 1.6).
Рис. 1.6. Повторение на микроскопическом уровне. Чешуйки на крыле бабочки подобны мазкам на картине художника-пуантилиста: каждому мазку соответствует одна чешуйка специфического цвета. Вместе эти чешуйки (или мазки) формируют геометрический рисунок. Фотография Стива Пэддока.
Этих примеров достаточно, чтобы оценить невероятно сложную задачу развития — создание полноценного организма из одной-единственной крошечной клетки. Здесь задействовано множество деталей, и все эти детали важны. Небольшое изменение на ранней стадии развития приводит к целому каскаду последствий. Что же это за процесс, который позволяет собрать массивного динозавра и аккуратно раскрасить пятна на крыльях бабочки?
Учитывая такое невероятное разнообразие размеров и форм животных, детали развития каждого вида кажутся "почти бесконечным набором особенностей, каждую из которых следует рассматривать в отдельности", как всего четверть века назад заметил молекулярный биолог Понтер Стент. Однако биологи были удивлены и обрадованы, когда обнаружили, что в строении животных существуют закономерности, которые, к счастью, проявляются не только во внешности, но и гораздо глубже — на уровне генетических механизмов развития. Итак, в этой главе я начну рассказывать о внешнем сходстве, а в последующих двух главах мы поговорим о сходстве на более глубоком уровне — на уровне генов.
Эволюция как изменение числа и типа элементов
Модульное строение животных определяет их форму. Анатомы уже давно заметили, что, вне зависимости от внешних различий, тела и части тел животных так или иначе строятся вокруг нескольких явственных тем. Больше столетия назад некоторые из этих тем были очерчены английским биологом Уильямом Бэтсоном. Его идея оказалась очень полезной для понимания логики строения животных и того, как в эволюции появляются варианты одной общей темы.
Бэтсон обнаружил, что тела многих крупных животных состоят из повторяющихся частей, и многие из этих частей, в свою очередь, также состоят из повторяющихся единиц. Если рассматривать определенную группу животных, выясняется, что наиболее очевидные различия между членами группы заключаются в количестве и типе повторяющихся структур. Например, хотя все позвоночные имеют модульное строение позвоночника, состоящего из отдельных позвонков, количество и тип позвонков разного типа у всех позвоночных различаются. Общее число позвонков от головы до хвоста варьирует в широких пределах: от десятка у лягушки до тридцати трех у человека и нескольких сотен у змеи (рис. 1.7). Кроме того, позвонки можно подразделить на шейные, грудные, поясничные, крестцовые и хвостовые. Основное различие между этими типами позвонков у разных животных заключается в их размере и форме, а также в наличии (или отсутствии) соединенных с ними структур, таких как ребра. Причем разные позвоночные животные в значительной степени различаются по числу позвонков каждого типа.
Рис. 1.7. Скелет змеи. Форму тела змеи определяет наличие сотен позвонков и ребер. Рисунок предоставлен Куртом Слэдки, Университет Висконсина.
Тот же самый архитектурный принцип применим к строению и разнообразию форм членистоногих. Тела членистоногих животных состоят из повторяющихся сегментов, число которых в туловище (т.е. за головой) может составлять от одиннадцати у насекомых до нескольких десятков у сороконожек и многоножек. Группы сегментов различаются между собой (например, грудные и брюшные) по размеру и форме, но особенно по тому, какие конечности от них отходят (так, от грудных сегментов насекомых отходит по паре ног, а от брюшных нет).
Позвоночные и членистоногие успешно освоили все среды обитания (воду, сушу и воздух) и отличаются от других животных особой сложностью анатомии и поведения. Тела животных обеих групп построены из похожих повторяющихся элементов. Есть ли связь между модульной структурой тела и успешностью эволюционной диверсификации? Я считаю, что есть. Задачей биологов было понять, как такие животные могут быть построены, начиная от единственной клетки, а также как в процессе эволюции появились всевозможные варианты одного и того же плана строения. Модульное строение тел позвоночных и членистоногих, а также вариабельность числа и типа составляющих модулей — важные ключи к пониманию этих процессов.
Части тела, которые являются модульными и сконструированы из сходных структурных единиц, значительно различаются у разных видов по числу и типу. Конечности четвероногих позвоночных (тетрапод) обычно имеют от одного до пяти пальцев. На руках и ногах человека имеется по пять видов пальцев (большой, средний и т.д.). Сходство между пальцами очевидно, а различие касается главным образом их размера и формы. Конечности четвероногих животных адаптированы к различным функциям и имеют весьма разнообразное строение, а лежащая в их основе пятипалая структура сохранялась на протяжении 350 млн лет, хотя у некоторых видов в ходе эволюции количество пальцев все же изменилось и находится в диапазоне от одного до пяти (у верблюда два пальца, у носорога три и т.д.). Вариации на тему тетраподной организации могут быть весьма значительны (см. рентгеновские снимки на рис. 1.8). Интересно, что близкородственные виды могут различаться в заметной степени; в некоторых группах животных эволюционировали виды, различающиеся по количеству пальцев.
Рис. 1.8. Разнообразие формы конечностей позвоночных животных. Конечности всех позвоночных представляют собой вариации общего плана строения с изменением числа, размера и формы отдельных элементов (таких как пальцы). Фотографии предоставили Курт Слэдки из Университета Висконсина и Крейг Хармс из Университета Северной Каролины.
Гомология, сериальная гомология и закон Уиллистона
При сравнении частей тел животных разных видов важно понимать, сравниваем ли мы одну и ту же часть тела, которая могла измениться различным образом, или части тела, представляющие собой серию, сходство между которыми может быть весьма отдаленным. Например, передние конечности саламандры, зауропода, мыши и человека являются гомологами. Это означает, что все они представляют собой одну и ту же структуру, модифицированную определенным образом у каждого вида. Все они произошли от передней конечности общего предка. Задние конечности четвероногих позвоночных и наши ноги — тоже гомологи. По отношению друг к другу передние и задние конечности являются сериальными гомологами: они возникли как повторяющиеся структуры и у разных животных дифференцировали в разной степени. Примерами сериальных гомологов являются позвонки и связанные с ними структуры (ребра); передние и задние конечности четвероногих животных; пальцы; зубы; элементы ротового аппарата, усики и ноги членистоногих; а также передние и задние крылья насекомых.
Изменение числа и вида сериальных гомологов является одной из важнейших тенденций в эволюции животных. Давайте рассмотрим еще пару примеров. Если вы любите морепродукты, вам, должно быть, приходилось разделывать омаров. Расчленяя этих животных, вы, вероятно, обращали внимание на их модульное строение и большое разнообразие конечностей (рис. 1.9). Несколько особенностей строения омаров отражают общие для членистоногих темы модульного строения и сериальной гомологии. Во-первых, тело этого животного состоит из головы (с глазами и ротовым аппаратом), грудного отдела (с ходильными ногами) и длинного хвоста (самое вкусное!). Во-вторых, разные отделы тела имеют специфические придатки (усики, клешни, ходильные ноги, плавательные ноги). В-третьих, каждый придаток, в свою очередь, тоже состоит из сегментов, и в разных придатках число таких сегментов различается (сравните клешни с ходильными ногами). Если бы вы отважились расчленить насекомое или краба, то вы бы заметили определенное сходство строения, организации и сегментации их тел, но при этом и явное различие в количестве и виде сериально гомологичных структур.
Рис. 1.9. Разнообразие сериально повторяющихся элементов у омара. Усики, клешни, ходильные ноги, плавательные ноги и хвостовые структуры — все это модификации базовой структуры конечностей. Рисунок Джейми Кэрролл.
Второй пример сериально гомологичных частей тела — это зубы, которыми мы пережевываем тех самых омаров. Наши челюсти оснащены зубами нескольких типов (клыки, большие и малые коренные зубы, резцы и др.). И вновь, одно из очевидных различий между всеми позвоночными заключается в количестве и типе зубов. Например, у примитивных рептилий, относящихся к крупным морским видам, был полный рот практически одинаковых зубов, но позднее у животных развились разные зубы, предназначенные для откусывания или пережевывания пищи. Различие типов зубов отражает различия в характере питания: у плотоядных животных есть резцы и клыки, тогда как у травоядных — в основном коренные зубы (рис. 1.10). По форме зубов мы тоже отличаемся от наших родственников приматов (рис. l.11). Из зубов получаются отличные, прочные окаменелости, и эти находки сыграли очень важную роль в изучении наших древних предков и их образа жизни.
Рис. l.10. Зубы примитивных позвоночных. Зубы мозазавра (внизу) кажутся практически одинаковыми, тогда как у более поздних позвоночных (вверху вы видите череп лошади) появились разные типы зубов. Фотография реконструированного черепа Platecarpus plaifrons предоставлена Майком Эверхартом, сайт Oceans of Kansas Paleontology (http://oceansofkansas.com/).
Рис. 1.11. Варианты зубов у приматов. Приматы различаются по количеству и форме клыков и больших и малых коренных зубов. Сверху вниз: человек, горилла, павиан, капуцин, мадагаскарский лемур. Из книги Т. Гексли "О положении человека в ряду органических существ", 1863.
Эволюционные тенденции изменения числа и вида повторяющихся структур настолько распространены, что палеонтолог Сэмюель Уиллистон в 1914г. сделал следующий общий вывод: "в эволюции существует закон, в соответствии с которым количество частей тела со временем сокращается, а оставшиеся постепенно приобретают специфическую функцию". Уиллистон занимался изучением древних морских пресмыкающихся. Он обратил внимание на то, что в ходе эволюции более ранние формы, имевшие большее количество сходных сериально повторяющихся элементов, сменялись более поздними, у которых количество этих элементов сокращалось, а их специализация усиливалась. Причем специализированные структуры редко возвращались в неспециализированное состояние, в более общие формы. К примеру, когда у тетрапод впервые появились пальцы, этих пальцев на каждой ноге было по восемь. Но типов пальцев было не более пяти, и в конце концов число пальцев сократилось до пяти, каждый из которых имел свою функцию или в дальнейшем редуцировался. В биологии мало общих законов, а из тех, что существуют, совершенно определенно бывают исключения. И все же закон Уиллисона является полезным наблюдением, распространяющимся не только на древних рептилий, о которых писал ученый. Существует общая тенденция, в соответствии с которой сериальные гомологи со временем приобретают функциональную специализацию и уменьшаются в числе. Специализация морфологии позвонков, зубов и пальцев у позвоночных, а также ног и крыльев у членистоногих практически всегда сопровождались уменьшением числа повторяющихся элементов. Уиллистон и Бэтсон уловили некоторые простые закономерности, касающиеся строения животных и их эволюции, что позволило выявить некие общие правила, которым подчиняется история развития животных и формирование их разнообразия.
Симметрия и полярность
Кроме повторяемости структурных элементов, тела и части тел животных обычно обладают еще двумя особенностями — симметрией и полярностью. Большинству знакомых нам животных присуща билатеральная симметрия. Это означает, что их левая и правая половины симметричны относительно центральной оси симметрии, совпадающей с длинной осью тела. Такое строение также подразумевает, что у животного есть зад и перед, и именно оно способствовало эволюции множества эффективных способов передвижения. Некоторые животные демонстрируют иные типы симметрии. Например, пентарадиальная симметрия характерна для иглокожих, к которым относятся морские ежи, круглые и плоские, и многие другие замечательные животные (рис. 1.12). Ось симметрии животного дает ключ к разгадке его строения.
Рис. 1.12. Другие типы симметрии животных. Иглокожие, такие как круглые морские ежи (слева), плоские морские ежи (в центре) и морские звезды (справа), обладают радиальной симметрией. Рисунок Джейми Кэрролл.
Разобраться в строении животного помогает и полярность тела и его частей. У большинства животных существует три оси полярности: от головы к хвосту, сверху вниз (у нас — от груди к спине, так как мы с вами ходим на двух ногах) и от проксимального (ближнего к туловищу) конца к дистальному (удаленному от туловища) концу. Проксимо-дистальная ось характерна для структур, отходящих от туловища, например для конечностей. Отдельные части тела тоже имеют полярность. Например, кисти рук имеют три оси, ориентированные от большого пальца к мизинцу, от тыльной стороны руки к ладони, а также от запястья к кончикам пальцев.
Как форма тела закодирована в геноме?
Модульность, симметрия и полярность — практически универсальные характеристики строения тела животных, в том числе таких сложных или крупных, как бабочки или зебры. Эти характеристики и эволюционные тенденции, подмеченные Уиллистоном и Бэтсоном, говорят о том, что в архитектуре тел животных существуют порядок и логика. За невероятным разнообразием форм животных кроются некие общие закономерности строения и эволюции.
В этой книге я сосредоточусь на четырех основных вопросах:
1 Какие основные "правила" определяют форму животных?
2 Каким образом закодирована видоспецифичная информация, необходимая для построения конкретного животного?
3 Как эволюционирует разнообразие форм?
4 Чем объяснить существование глобальных эволюционных тенденций, таких как изменение числа и функций повторяющихся элементов структуры?
Где следует искать все эти правила и инструкции? Конечно, в ДНК. В полном наборе ДНК животного (геноме) содержится информация, необходимая для его формирования. Инструкции для создания пяти пальцев, двух пятен-глазков, шести ног или белых и черных полос закодированы в геноме того вида, который обладает соответствующими признаками. Означает ли это, что существуют гены, ответственные за создание пальцев, пятен, полос и т.д.? В первой части книги я расскажу о том, каким образом в геноме закодированы анатомические признаки. Во второй части книги мы поговорим об эволюционном разнообразии. Понятно, что в ДНК животных с тремя или четырьмя пальцами, двумя или семью пятнами-глазками, шестью или восемью ногами, а также с белой или черной окраской содержатся разные инструкции. Эволюция формы в конечном счете сводится к генетике. Но чтобы понять, каким образом гены создают всю потрясающую красоту животного мира, нам сперва придется обратиться за подсказкой к монстрам.