Бесконечное число самых прекрасных форм. Новая наука эво-дево и эволюция царства животных — страница 8 из 18

Около десяти лет назад "кабинетные" молекулярные биологи вроде меня, не казавшие носа из лаборатории и занятые своими играми с ДНК, и палеонтологи, "полевые" ученые, раскапывавшие древние сокровища в экзотических точках планеты, были совершенно чужды друг другу. У нас не было ничего общего, мы никогда не пересекались и не искали встреч. Нас по-разному учили, работали мы обычно на разных факультетах и публиковались в разных научных журналах.

Но вдруг все изменилось.

Теперь палеонтологи говорят о Hox-генах, а молекулярные биологи отваживаются использовать в своей речи такие слова, как "кембрийский"!

Во второй части книги я расскажу чрезвычайно счастливую историю союза эмбриологии и эволюционной биологии, который помог открыть тайну эволюции формы тела животных. Толчком к этому объединению во многом послужило развитие в молекулярной биологии мощных технологий, благодаря которым возникли новые методы изучения развития и эволюции животных. То, что мы знаем о геномах ныне существующих видов и о развитии их эмбрионов, позволяет взглянуть на историю животного мира, отраженную в палеонтологической летописи, совершенно с другой точки зрения и понять не только то, что произошло, но и как это произошло — то есть нащупать внутренние механизмы формирования биологического разнообразия. Одна из догм современной геологии гласит: "настоящее — это ключ к прошлому", то есть процессы, которые мы можем наблюдать сегодня, происходили и в прошлом и могут объяснить прошлое. Эта основополагающая идея также является одним из основных принципов новой науки — эволюционной биологии развития, или эво-дево.

В первой части книги мы с вами выстроили сцену, используя четыре основных составляющих развития животных: модульную архитектуру, набор генов развития, географию эмбриона и генетические переключатели, координирующие работу генов развития в эмбрионе.

Во второй части книги начнет разворачиваться действие — эволюция формы животных как следствие изменения географии эмбриона. Мы узнаем о том, как география и форма эволюционируют за счет того, что гены развития начинают использоваться по-новому. Эволюция формы происходит благодаря тому, что очень старые гены обучаются новым приемам.

В следующих главах мы узнаем о том, что эво-дево способна помочь нам заглянуть в далекое прошлое и воссоздать облик давно вымерших животных, а также пролить свет на наиболее драматические события в истории животных. Мы исследуем ход эволюции, начиная с древнейших корней царства животных, возникшего в первобытных морях более 500 млн лет назад, проследим за возникновением новых структур, позволивших животным освоить сушу и воздушное пространство, а также поговорим о самых новых ветвях филогенетического древа животных, из которых складывается невероятное разнообразие современных форм. Это исследование поможет нам понять, каким образом мы с вами произошли от четвероногого гоминидного предка с небольшим мозгом.

Я приведу примеры, которые помогут создать живую картину эволюционного процесса. Эво-дево предлагает абсолютно новый подход и беспрецедентное качество доказательств. Некоторые из этих новых доказательств позволяют окончательно поставить точку в давних научных дискуссиях, другие поднимают новые вопросы, а третьи открывают путь к "Чаше Грааля" эволюционной биологии, т.е. безошибочно указывают на те генетические изменения, которые стали причиной эволюции конкретных видов животных.

Поскольку современная эмбриология посредством эво-дево стала полноправным участником объединенного эволюционного синтеза, пришло время отразить эти революционные изменения в учебниках по биологии. Я думаю, что методы эво-дево позволяют гораздо лучше объяснить процесс эволюции форм животных, чем абстрактные экстраполяции эпохи современного синтеза. К классическим примерам действия естественного отбора, таким как истории о галапагосских вьюрках и березовой пяденице, эво-дево добавляет истории об омарах и креветках, пауках и змеях, пятнистых бабочках, мешотчатых прыгунах и ягуарах. Эта наука лучше других позволяет объяснить происхождение "бесконечного числа прекрасных форм".

Трилобиты Olenoides serratus сланцев Берджес в Канаде. Фотография Чипа Кларка, печатается с разрешения Смитсоновского института.

Глава 6. Большой взрыв в эволюции животных

По-видимому, природе нравится разнообразить один и тот же механизм бесчисленными способами. Она оставляет тот или иной род своих созданий, лишь размножив индивиды во всех возможных формах.

Дени Дидро "Мысли к истолкованию природы" (1753)

В Смитсоновском музее естественной истории в Вашингтоне, сразу за входом в зал ископаемых, располагается ряд обыкновенных зеленых ящиков с экспонатами. Большинство посетителей равнодушно минуют их и устремляются в галерею с динозаврами и прочими чудовищами. А между тем в этих ничем не примечательных ящиках в виде небольших каменных брусков хранятся самые выдающиеся окаменелые остатки животных из всех, когда-либо найденных учеными.

Здесь представлены окаменелости из сланцев Берджес. Эти окаменелости, относящиеся к середине кембрийского периода (около 505 млн лет назад), были обнаружены палеонтологом Чарльзом Уолкоттом в 1909 году во время экспедиции в Британскую Колумбию. Эти странные, удивительные формы, запечатленные в темном серо-черном сланце, долгое время завораживали палеонтологов. Эти животные, сохранившиеся целиком, с антеннами, конечностями, хвостами и глазами, относятся к самым древним сложным животным, и среди них есть представители современных групп, таких как членистоногие, кольчатые черви, хордовые и моллюски. По-видимому, все эти животные возникли за относительно короткое время — всего 15-20 млн лет. Примеры животных, сохранившиеся в палеонтологической летописи до этого, крайне скудны. Этот эпизод быстрого (в геологическом масштабе) возникновения сложных форм запечатлен в породах, обнаруженных по всему свету, возраст которых оценивается в 525_505 млн лет. Это так называемый кембрийский взрыв — начало нового большого этапа в эволюции животных.

Впервые внимание широкой публики к кембрийскому взрыву привлек Стивен Джей Гулд в своей изумительной книге "Удивительная жизнь" (Wonderful Life, 1989). Одной из проблем, вставших перед учеными в связи с изучением кембрийских отложений, была классификация. Их "странная" (с современной точки зрения) анатомия вызывала множество споров о том, куда отнести каждое конкретное животное — к моллюскам или к червям, к членистоногим или нет... или же оно вообще не имеет отношения ни к одной из известных групп.

Связь кембрийских животных с современными группами — лишь одна из загадок. Есть и другие: что стало причиной взрыва? Почему крупные и сложные животные возникли именно в это время? Почему какие-то из них оказались успешными? Относительно причин взрыва высказывалось множество гипотез. Одни теории объясняли взрыв влиянием внешних факторов, таких как глобальное изменение климата. Другие выдвигали внутренние причины, в частности, появление генов, участвующих в формировании тела. Как в случае многих теорий, пытающихся объяснить далекое прошлое, теорию возникновения кембрийского взрыва было легче сформулировать, чем проверить. Что можно сказать о генах животных, умерших свыше 500 млн лет назад? Ведь в кембрийских отложениях нет самих животных, а есть только их отпечатки, возникшие под давлением огромных геологических сил. Но благодаря новым достижениям эмбриологии нам удалось выяснить, какую роль играли гены в случае кембрийского взрыва — в том, что он произошел, и в том, каковы были его последствия. Наука эво-дево замечательна тем, что она позволяет в некотором смысле "воскресить" давно вымершие формы.

Удивительное открытие заключается в том, что все гены, необходимые для создания крупных и сложных животных, существовали задолго до их появления в период кембрийского взрыва. Этот генетический багаж возник за 50 млн лет до появления этих форм или даже раньше. Это означает, что быстрое появление и изменение различных животных было вызвано не изменением набора генов развития, а какой-то другой причиной.

Отличительная черта многих групп кембрийских животных — изменение числа и вида повторяющихся частей тела. Это яркое подтверждение закона Уиллистона объясняется изменением географии эмбрионов. Изменение формы тела происходит из-за изменения координат экспрессии генов развития, особенно Hox-генов. А это изменение, в свою очередь, вызвано работой переключателей — именно эволюция переключателей и стала причиной кембрийского взрыва и дальнейшей эволюции более поздних групп животных.

Основным предметом обсуждения в данной главе является эволюция различных форм животных. Но чтобы вести предметный разговор, нужно установить, что именно произошло в этот период в царстве животных: что предшествовало взрыву, что случилось во время взрыва и что последовало за ним. Я начну с рассказа о животных, которые существовали до кембрия. Хотя окаменелостей, относящихся к этому времени, сравнительно немного, эво-дево позволяет проникнуть в прошлое и представить себе внешний вид и строение предшественников кембрийских животных, в том числе и загадочного последнего общего предка всех билатерально симметричных животных, включая человека.

Разгадываем загадки: животные до большого взрыва

Нашей Земле около четырех с половиной миллиардов лет. Возможно, первые живые существа появились на планете около трех с половиной миллиардов лет назад, но на протяжении первых трех миллиардов лет это были очень мелкие (не более нескольких миллиметров) и простые организмы. До появления царства животных уже существовали царства бактерий, архей, протистов и грибов (наземные растения появились позже животных, хотя их предшественники, зеленые водоросли, возникли раньше животных). В конце докембрийского периода, примерно 600 или 570 млн лет назад, размер и форма живых существ начали изменяться, и появились существа сантиметрового размера (так называемая эдиакарская фауна, получившая свое название от Эдиакарских холмов на юге Австралии, где впервые были найдены представители этой группы). Эти загадочные животные на протяжении десятилетий вызывали у палеонтологов массу вопросов. Биолог из Гарварда Энди Нолл называл их тестом Роршаха для палеонтологов. Чего только ни думали об этих существах в форме трубки либо листа папоротника или с радиально симметричным телом! Их называли и артефактом, возникшим в процессе образования осадочных пород, и исчезнувшей формой многоклеточных существ, и предками ныне существующих животных. Связь эдиакарской фауны с современными животными до сих пор остается предметом дискуссии (рис. 6.1). Но чем бы ни были эти причудливые существа, в те времена уже должны были существовать предшественники кембрийских животных. Мы точно не знаем, как они выглядели, но эво-дево позволяет нам представить себе, кого мы ищем.

Рис. 6.1. Представители эдиакарской фауны. Филогенетические связи между Dickinsonia costatala и Spriggina flounders, найденными в Эдиакарских холмах на юге Австралии, и современными или кембрийскими животными пока не установлены. Фотография предоставлена Джимом Джелингом из Южно-Австралийского музея.


Чтобы представить себе, как выглядели наши отдаленные предки, мы должны поговорить о строении филогенетического древа (рис. 6.2). Биологи придают большое значение расположению групп животных на эволюционном древе, поскольку знание родственных связей позволяет понять, в какой момент и в какой группе возник тот или иной признак. Представителями двух основных ветвей филогенетического древа животных являются насекомые и позвоночные. Эти две основные ветви были выделены на основании фундаментального различия, заключающегося в положении рта по отношению к отверстию бластопора. Те животные, у эмбрионов которых рот образуется не в том же месте, где находился бластопор, называются вторичноротыми; к этой группе относимся мы с вами, все позвоночные, иглокожие (различные морские ежи) и некоторые другие животные. Те животные, у эмбрионов которых рот образуется из отверстия бластопора, называются первичноротыми; к ним относятся насекомые, другие членистоногие, кольчатые черви, моллюски и некоторые другие группы. В основании древа располагаются губки, книдарии (медузы, кораллы, актинии) и гребневики, которые ответвляются от общего ствола до разделения ветвей первичноротых и вторичноротых. Представители этих нижних ветвей древа сыграли важную роль в истории жизни на Земле и продолжают играть важную роль в жизни современного океана, но я не буду подробно рассказывать о них в этой книге. Основное внимание я уделю двум верхним ветвям эволюционного древа.

Рис. 6.2. Эволюционное древо животных. Две основные группы билатерально симметричных животных — первично- и вторичноротые; их гипотетического последнего общего предка называют Urbilateria (урбилатерия). Ветви книдарии (актинии, кораллы) и губок отделились от основного ствола до возникновения билатерально симметричных животных. Рисунок Джоша Клейса.


Первые типичные представители первично- и вторичноротых появились в кембрийском периоде. Поскольку в этот период эти две группы уже сформировались, мы вправе предположить, что их общие предки жили до кембрийского периода. Но это только умозаключение, поскольку ископаемых остатков, относящихся к докембрийскому периоду, обнаружено совсем немного. На самом деле к первичноротым было отнесено единственное животное, Kimberella, жившее в докембрийскую эпоху, а именно, около 555 млн лет назад.

Так куда же делись эти предки? До наших дней сохранились отпечатки медуз, кораллов и губок, а также представителей эдиакарской фауны, так что, по-видимому, отсутствие окаменелостей не связано с "условиями хранения". Поскольку останки некоторых крупных животных все же были найдены, одно из возможных объяснений заключается в том, что первые первично- и вторичноротые были очень маленькими (может быть, меньше сантиметра) и имели хрупкое строение. Другое объяснение заключается в том, что среди представителей эдиакарской фауны есть-таки первично- и вторичноротые, но мы просто не можем их распознать, поскольку у них еще нет характерных признаков большинства современных животных. Без надежных фактических доказательств палеонтологи могут лишь приблизительно описать последнего общего предка первично- и вторичноротых как невыразительное червеобразное существо.

Итак, на основании палеонтологических данных мы почти ничего не можем сказать о предках современных животных, но, может быть, у нас есть какие-то другие доказательства? Некоторые выводы можно сделать, исходя из общих признаков потомков. Именно этот логический подход эво-дево использует для изучения событий далекого прошлого. Основной постулат эво-дево гласит, что если какой-то признак является общим для представителей двух или нескольких групп, значит их общий предок (точка расхождения этих ветвей на филогенетическом древе) также обладал этим признаком. Такую же логику можно применить к нашим знаниям о процессе развития и о генах двух или нескольких групп животных, и это позволит нам получить представление об их общем предшественнике. Так, мы уверены в том, что последний общий предшественник первично- и вторичноротых животных обладал билатеральной симметрией. Все представители обеих групп, по крайней мере, на каких-то стадиях своего жизненного цикла, обладают двусторонней симметрией (у морских ежей и других иглокожих, во взрослом состоянии демонстрирующих радиально симметричное строение, личинки билатерально симметричны). Такая организация сделала возможными новые способы передвижения и более сложный образ жизни. Но теперь мы можем пойти дальше: на основании сходства набора функций общих для всех животных генов развития мы можем с уверенностью утверждать, что общий предшественник билатерально симметричных животных (которого Эдди де Робертис из Калифорнийского Университета назвал Urbilateria, "примитивная билатерия") обладал набором генов развития, состоящим из шести или семи Hox-генов, генов Рах-6, Distal-less, tinman, а также нескольких сотен других генов, участвующих в построении тела.

Интересно узнать, зачем урбилатерии нужно было такое множество генов? И действительно ли это животное напоминало невыразительного червяка? Связано ли наличие столь большого числа генов с тем, что это существо обладало сложными анатомией и поведением?

Один из способов объяснить сходство функций генов развития у различных животных заключается в том, чтобы наделить эту самую урбилатерию определенными анатомическими характеристиками, за которые эти гены отвечают. Мы не знаем точно, насколько сложным был этот организм, но логическим путем можем прийти к определенным заключениям. К примеру, были ли у урбилатерии глаза? Вероятно, не такие крупные и выразительные, как у трилобитов кембрийского периода. Существо с большими сложными глазами, скорее всего, должно было бы сохраниться в виде окаменелостей. Однако, поскольку у представителей обеих основных ветвей двустороннесимметричных животных есть ген Рах-6 и другие гены, участвующие в построении глаза, урбилатерия должна была иметь какие-то глазные пятна или светочувствительный орган, состоящий из фоточувствительных клеток, расположенных в определенном порядке.

Используя туже логику, можно задаться вопросом, были ли у урбилатерии конечности. Палеонтологи находят в ископаемых осадочных породах извилистые следы, оставленные передвигающимися животными, однако только в кембрийском периоде таких следов становится действительно много. Так что маловероятно, что урбилатерия обладала полноценными конечностями. Но гены, необходимые для построения конечностей, у нее определенно были. Эти гены используются для создания любого рода отростков на туловище животного. Таким образом, даже если урбилатерия не умела ходить или плавать, она могла иметь отростки, отходящие от туловища; возможно, они помогали ей находить пищу (сенсорный аппарат) или затаскивать ее в рот (ротовые придатки или щупальца). Позднее, в кембрийском периоде, эти гены стали использоваться для формирования полноценных конечностей для ходьбы или плавания.

Мы знаем, что у урбилатерии был ген tinman, но было ли у нее сердце? Конечно, у нее не было такого сложного современного сердца, как у нас. Но это могла быть группа сокращающихся клеток, проталкивающих жидкость по телу. Кроме того, наличие нескольких Hox-генов указывает на то, что передняя, средняя и задняя части этого животного различались между собой. Наконец, используя наши знания о генах и известных нам закономерностях развития, мы можем утверждать, что урбилатерия имела сквозную кишку, рот и анус. Кроме того, мы можем сказать, что она обладала мышечными, нервными, сократительными, фоторецепторными, пищеварительными, секреторными и фагоцитирующими клетками, поскольку все эти виды клеток существуют у ее потомков. Нам неизвестно, в какой степени эти клетки были организованы в специализированные органы, которые мы могли бы назвать глазами, сердцем, конечностями и т.д. Однако уровень организации должен был быть достаточно высоким, поскольку именно в тот период гены Рах-6, D//, tinman, Hox и др. начали играть роль, которая сохранялась за ними более 500 млн лет.

Но мы ничего не можем сказать с уверенностью, пока не обнаружим окончательных доказательств в виде окаменелостей (и в настоящее время ведутся поиски новых мест и типов отложений). Впрочем, эво-дево позволяет нарисовать предварительный портрет этого существа: это животное обладало всеми генами, необходимыми для построения сложного тела, и уже достигло определенного уровня анатомической сложности.

Дарвин тоже рассуждал на тему о наших предшественниках в письме к Чарльзу Лайелю[6]. Экстраполируя свои знания о позвоночных, он писал: "Нашим предшественником было животное, которое дышало водой, имело плавательный пузырь, большой хвост для плавания, несовершенный череп и, безо всяких сомнений, было гермафродитом! Вот приятное родство для человека". Открытие сходных черт у большинства групп животных позволяет нам уйти еще дальше в глубины времен, к еще более примитивным созданиям, по сравнению с которыми дарвиновский образ предшественника кажется чрезвычайно сложным.

Так что гордитесь своими предками!

Кембрийский взрыв: так много членистоногих и так мало времени

Геологическая граница кембрийского периода отстоит от нашего времени приблизительно на 543±1 млн лет. Однако эта граница не совпадает с резким всплеском в эволюции животных: всего несколько форм обнаруживается в палеонтологической летописи за следующие 15-20 млн лет. И только потом появились настоящие членистоногие, хордовые, иглокожие и плеченогие. Поскольку эти формы явственно отличались друг от друга (иначе их нельзя было бы классифицировать), скорее всего, диверсификация отдельных линий продолжалась уже долгое время, хотя следов этого процесса в палеонтологической летописи мы пока не находим.

Один из ведущих палеонтологов, восстанавливающих события кембрийского периода, Саймон Конвей Моррис, сравнил эту раннюю фазу диверсификации с бикфордовым шнуром, конец которого теряется в глубине веков. Мы не знаем, какой была длина этого шнура, но в начале кембрийского периода огонь достиг пороховой бочки и произошел взрыв разнообразия форм. Появились не просто отдельные представители основных групп животных, но огромное разнообразие вариаций основных планов строения. Только в сланцах Берджес обнаружено около 140 видов животных, относящихся более чем к десяти типам. Находки в других местах дополнили это изобилие. Ископаемые из района Чэнцзян в провинции Юньнань в Китае особенно знамениты своей великолепной сохранностью, и, что еще важнее, они на 15 млн лет старше берджесских окаменелостей. Фауна из района Чэнцзян позволяет датировать появление некоторых групп животных более ранним временем. На этом участке раскопки ведутся очень активно и растет число ошеломляющих находок. Среди них — остатки некоторых фантастических позвоночных, о которых я вкратце расскажу. Кроме того, эта фауна — моментальный снимок из другого времени и из другой части света. Окаменелости, обнаруженные в Чэнцзяне и Берджесе, показывают, что наибольшее разнообразие наблюдалось среди представителей двух групп животных — членистоногих и лопастеногих (тип Lobopodia). Лопастеногие животные, имевшие простые ноги, не состоявшие из отдельных члеников, известны мало, однако они сыграли ключевую роль в эволюции членистоногих и в событиях кембрийского периода в целом.

Абсолютное большинство среди фауны кембрийского периода составляют членистоногие. К ним относится треть или более всех ископаемых видов, обнаруженных в сланцах Берджес. Среди них и широко известные трилобиты, такие как Olenoides serratus (с. 136) или Naroaoia compacta, и менее известные Waptia fieldensis, Marrella splendens (доминирующий Вид среди ископаемых сланцев Берджес), а также Canodaspis perfecta (рис. 6.3). Общим для всех этих животных является сходное строение большинства сегментов тела и ассоциированных с ними конечностей. Причем такое строение характерно не только для членистоногих — лопастеногие также имеют большое количество однотипных частей тела.

Рис. 6.3. Членистоногие животные кембрийского периода, обнаруженные в сланцах Берджес. Эти животные демонстрируют разные варианты строения артропод и имеют наборы членистых конечностей, различающихся по числу и типу специализации. Рисунок Лианн Олдс.


Среди лопастеногих есть любимцы Стивена Гулда, такие как животное под названием Aysheaia (рис. 6.4). Одна из причин повышенного интереса к Aysheaia заключается в простоте строения ее тела, состоящего из повторяющихся сегментов, и наличии конечностей, имеющих форму коротких трубочек. Эти черты говорят о том, что это примитивное животное, вероятно, было предком более сложных животных с членистыми конечностями. Уолкотт предположил, что Aysheaia следует отнести к кольчатым червям. Другие, включая Гулда, справедливо считали, что это животное необходимо классифицировать как лопастеногое. Ближайшими родственниками лопастеногих являются современные мягкотелые существа, называемые онихофорами, или бархатными червями. Для нашего рассказа важно, что онихофоры и исчезнувшие лопастеногие приходятся ближайшими родственниками членистоногим, это их так называемая сестринская группа. Считается, что членистоногие произошли от какого-то предка, напоминающего лопастеногое животное. Особенно важную роль ископаемые остатки лопастеногих сыграли в изучении процесса эволюции строения тела и конечностей древних членистоногих.

Одни из самых интересных животных кембрия относятся к лопастеногим, которых, с морфологической точки зрения, некоторые палеонтологи располагают на филогенетическом древе очень близко к примитивным членистоногим (рис. 6.4). Подробное изучение остатков таких животных, как Opabinia или ужасный Anomalocaris, а также других лопастеногих и членистоногих, позволяет сделать вывод о том, что именно лопастеногие приобрели целую серию усовершенствований, ставших основными отличительными признаками всех членистоногих: сегментация тела, твердый внешний скелет и двуветвистые (похожие на двузубую вилку) конечности. У разных лопастеногих встречаются те или иные из этих признаков. У Aysheaia не было ни одного из них, и поэтому ее считают наиболее примитивным представителем группы; у Opabinia было сегментированное тело, но не было двуветвистых конечностей, тогда как Anomalocarls имел двуветвистые конечности, но не имел полностью затвердевшего внешнего скелета. В следующей главе я подробнее расскажу о невероятных возможностях, появившихся в результате возникновения у животных этого типа конечностей.

Рис. 6.4. Лопастеногие животные кембрийского периода, обнаруженные в сланцах Берджес. Эти животные с простыми нечленистыми конечностями являются ближайшими родственниками членистоногих. Рисунок Лианн Олдс.


Чрезвычайно богатое разнообразие членистоногих и лопастеногих, обнаруженных в Чэнцзяне и Берджесе, а также в других местах, позволяет нам воспринимать кембрийский взрыв не как мгновенное чудо ("ничего не было — и вдруг появилось"), а как важный эпизод, в течение которого происходила эволюция строения тела животных. В масштабе всей истории Земли 10 или 15 миллионов лет — лишь краткий миг, но этого времени вполне достаточно для формирования новых типов конечностей или изменения формы тела. Для сравнения скажу, что большинство видов млекопитающих — приматы, грызуны, летучие мыши, землеройки, хищники и др. — появились в палеонтологической летописи в первые 10-15 млн лет после исчезновения динозавров (65 млн лет назад).

Но вопрос заключается в следующем: какова была движущая сила этой эволюции? Разобраться нам поможет эво-дево.

Новые гены для новых животных?

Самое простое и на протяжении долгого времени самое распространенное представление о том, как гены связаны с эволюцией сложных форм, заключалось в том, что для создания новых планов строения и новых структур гены должны эволюционировать. Интуитивно такая идея понятна. Поскольку форма тела каждого животного определяется его уникальным генетическим содержанием, новые формы требуют новой информации, т.е. новых генов. Но, как мы вскоре увидим, несмотря на привлекательность этой идеи, изобретение "новых генов" не объясняет, появление или диверсификацию большинства групп животных.

Первую версию идеи о "новых генах" в связи с любой специфической группой организмов выдвинул Эдвард Льюис из Калифорнийского технологического института, получивший Нобелевскую премию за изучение Hox-генов у дрозофилы. Льюис предположил, что многочисленные Hox-гены, которые необходимы для специфической дифференцировки различных сегментов тела насекомых, эволюционировали из небольшого набора Hoх-генов, определявших более скромный набор сегментов тела у ранних насекомых и членистоногих. Гипотеза Льюиса оказалась ошибочной. Однако проверка этой гипотезы прекрасно проиллюстрировала логику эво-дево и привела к формированию более четкой картины эволюции членистоногих.

Как узнать, какие гены были у предков членистоногих? Логика умозаключений нам с вами уже знакома: если у двух или нескольких групп животных имеется общий признак, с большой вероятностью он был и у их общего предка. Но каких животных следует сравнивать? Opabinia, Anomalocaris и другие их собратья кембрийского периода давно исчезли. Это верно, но животные с лопастным строением конечностей все еще встречаются. Онихофоры не только напоминают древних Aysheaia из отложений в Берджесских сланцах, но по-прежнему передвигаются по земле на ножках-лопастях, точь-в-точь как это делали их кембрийские предки (рис. 6.5). Мы с моими студентами Бобом Уорреном, Джен Гриниер и Тедом Гарбером предположили, что онихофоры лучше других животных помогут нам ответить на вопрос о генах предков членистоногих, поскольку все общие гены современных онихофор и современных членистоногих должны были иметься у их последнего общего предшественника.

Рис. 6.5. Эволюционное древо членистоногих и лопастеногих. Показаны родственные связи между современными и вымершими группами животных. Общий предок двух групп животных, по-видимому, живший в докембрийскую эпоху, должен был иметь не менее десяти Нож-генов, поскольку именно такое количество этих генов найдено у всех его ныне живущих потомков. Рисунок Джоша Клейса.


Для нас проблема заключалась в том, что нигде в Соединенных Штатах, не говоря уже о Висконсине, онихофоры не водятся. Однако их много в Австралии, так что я "заставил" Боба и Джен покинуть Висконсин в середине нашей изумительной зимы и отправиться в Новый Южный Уэльс (Австралия), где наш коллега и эксперт по онихофорам Пол Уайтингтон (тогда работавший в Университете Новой Англии в Армидейле) мог бы научить их ловить этих созданий, ловко прячущихся в стволах упавших деревьев. "Беспокоиться не о чем", — заверил их Пол, разве что не стоит забывать о коричневых змеях[7], ядовитых пауках и гигантских жалящих многоножках, которые тоже любят такие укрытия.

Трудиться пришлось два сезона, но в конце концов Джен и Бобу удалось собрать достаточно мелких коричневых зверушек, относящихся к виду Akanthokera kaputensis (рис. 6.6), чтобы выделить из них ДНК и эмбрионов для дальнейших исследований. Наша основная задача состояла в том, чтобы идентифицировать все Hox-гены онихофор и понять, как они используются при формировании этих животных. Нам было известно, что у дрозофилы десять таких генов — восемь стандартных и два не таких стандартных, играющих несколько иную роль в развитии. Главный вопрос для Джен, Боба и Теда заключался в том, сколько и каких Hox-генов имеет наш вид онихофор. Они выделили ДНК из собранных животных, а потом использовали специальный метод, позволивший избирательно выловить из огромного генома только те кусочки ДНК, которые содержат Hox-гены. Наша команда установила, что, хотя онихофоры имеют очень небольшой набор разных сегментов и конечностей и отличаются относительно примитивным строением, у них есть все те же Hox-гены, что и у дрозофил и других членистоногих.

Рис. 6.6. Akanthokera kaputensis — представитель онихофор. Фотография Джен Гриниер и Стивена Пэддока.


Это говорит о том, что последний общий предшественник членистоногих и онихофор обладал всеми Hox-генами, имеющимися у современных членистоногих. Кроме того, это означает, что все лопастеногие и членистоногие животные кембрийского периода — от Aysheaia до Anomalocaris, Microdictyon и Marrella — также имели весь набор из десяти Hox-генов. Более того, варианты строения тела всех более поздних членистоногих — пауков, многоножек, насекомых и всевозможных ракообразных — формировались при участии того же набора Hox-генов.

В тот момент, когда мы впервые опубликовали свои данные, многие палеонтологи считали, что кембрийский взрыв мог быть вызван увеличением числа Hox-генов. Хотя наши данные полностью противоречили этой идее, мы не были разочарованы. Возможность проверки идеи путем изучения генов таинственных существ продемонстрировала способность эво-дево пролить свет на события далекого прошлого. Для "кабинетных" молекулярных биологов, таких как я и мои студенты, было невероятно важно внести значимый вклад в изучение истории кембрийского периода.

Но это было лишь начало. Вопрос оставался открытым: если эволюция кембрийских и более поздних животных не связана с появлением новых Hox-генов, то каковы ее механизмы? Простой факт наличия в ДНК тех или иных генов не давал ответа. Ключом к разгадке оказались география эмбрионов и процесс развития различных видов членистоногих. Наши исследования привели нас к выводу о том, что не столь важно, какие гены у нас есть, важно то, как мы их используем!

Сдвиг зон экспрессии Hох-генов и закон Уиллистона

Эволюция членистоногих в кембрийском периоде главным образом состояла в увеличении числа и разнообразия сегментов и конечностей. Тело трилобита состоит из трех основных отделов — головы, туловища и пигидия (хвостового отдела), причем сегменты каждого из этих отделов и отходящие от них конечности очень похожи друг на друга и различаются только по размеру. У ныне существующих групп членистоногих, представители которых появились не позднее чем через 150 млн лет после окончания кембрийского периода, конечности гораздо разнообразнее — их насчитывается более десяти видов. Отростки на голове, туловище и хвосте являются специализированными структурами, которые служат для питания, восприятия сигналов, передвижения, дыхания, рытья нор, копуляции, заботы о потомстве и защиты. Успешное развитие членистоногих, безусловно, связано с их способностью к адаптации, которая, в свою очередь, объясняется возрастающей специализацией конечностей.

Но как возникли разные типы конечностей? По всей видимости, этот процесс должен был сопровождаться серьезными изменениями географии эмбрионов членистоногих. Чтобы понять, что конкретно произошло в ходе эволюции членистоногих, мы вновь обратимся к анализу современных животных. Лучше всего генетический контроль дифференцировки конечностей изучен у дрозофил. Нам известно, что образование каждого типа конечностей (разнообразных отростков на голове, каждой из трех пар ног, обычно отсутствующих конечностей на брюшке, а также гениталий, которые также представляют собой модифицированные конечности) контролируется Hox-белками. Разнообразие формы и функций конечностей достигается путем экспрессии разных Hox-генов в разных участках тела вдоль главных осей эмбриона. При формировании эмбриона образуется множество зон экспрессии Hox-генов по отдельности и в разных сочетаниях (на рис. 6.7 эти зоны обозначены цифрами от 1 до 10).

Рис. 6.7. Сдвиг зон экспрессии Hox-генов определяет основные различия в форме тела членистоногих. Hox-гены обозначены номерами. Обратите внимание на сдвиг границы зоны экспрессии генов 7, 8 и 9 у насекомых, многоножек и четырех ракообразных (артемий, мизид, омаров и креветок-чистильщиков) (затемненная область). Количество ногочелюстей, или максилл (мк), находится в обратной зависимости от количества сегментов, в которых экспрессируются гены 8/9, и сдвигается в сторону увеличения от варианта артемий, у которой нет ногочелюстей. У многоножки непосредственно перед ногами располагается ядовитый коготь (я. к). У трилобитов, по-видимому, было всего три отдела тела, различающихся тремя разными комбинациями зон экспрессии Hox-генов. Рисунок Лианн Олдс.


Каким было строение эмбрионов кембрийских животных? Как экспрессировались их Hox-гены 500 млн лет назад? Увидеть этого мы не можем, но можем сделать некоторые выводы, сравнивая географию эмбрионов и картину экспрессии Hox-генов у разных ныне живущих членистоногих. Например, некоторые членистоногие, такие как жаброногие рачки, имеют очень простое строение грудного отдела, все сегменты и конечности которого очень похожи. По-видимому, таким же строением обладал их примитивный предок. На рис. 6.7 показано, что у эмбрионов жаброногих ракообразных зоны экспрессии двух Hox-белков (номера 8 и 9) идентичны, тогда как у насекомых зоны их экспрессии различаются. У многоножек, еще одной представительной группы членистоногих, рисунок экспрессии Hox-генов в эмбрионе напоминает таковой у жаброногих. Длинное туловище состоит из идентичных сегментов, несущих одинаковые конечности. У эмбриона многоножки те же два Hox-белка (номера 8 и 9) экспрессируются в каждом из сегментов и в отходящих от них конечностях. У этих двух членистоногих зоны идентичных сегментов соответствуют зонам экспрессии одного и того же (или одних и тех же) Hox-белков. Таким образом, можно сделать вывод, что у членистоногих кембрийского периода, таких как трилобиты, блоки похожих сегментов и отростков соответствовали зонам экспрессии одних и тех же Hox-белков.

Нам также известно, что границы между Hox-зонами у членистоногих обычно соответствуют смене типов сегментов и конечностей. У жаброногих и многоножек в сегменте, расположенном непосредственно перед грудным отделом, экспрессируется уже другой Hox-белок или комбинация Hox-белков (номера 7 и 5/6/7 соответственно) и образуются конечности другого типа. У жаброногих это конечности ротового аппарата, а у многоножки эта конечность стала ядовитым когтем, необходимым для иммобилизации жертвы и для защиты. Такая связь между различными типами конечностей и различными Hox-зонами, расположенными вдоль оси эмбриона, распространена достаточно широко.

Известно, что у членистоногих смещение зон экспрессии Hox-белков тесно коррелирует с эволюционными различиями в количестве и форме конечностей, развивающихся на соответствующих сегментах. Причем подобные различия наблюдаются не только между представителями основных классов членистоногих, но и внутри классов. Роль сдвига зон экспрессии генов Hox в эволюции прекрасно продемонстрировали Михалис Авероф и Нипам Пател, которые собрали и изучили эмбрионы широкой выборки ракообразных (к этой группе членистоногих относятся креветки, усоногие раки, крабы и омары). Одним из заметных различий между группами было разное количество ногочелюстей (максилл), представляющих собой модифицированные конечности и расположенных в передней части грудного отдела. У жаброногих ракообразных ногочелюстей нет, нет их и у примитивных ракообразных. Однако более сложные ракообразные имеют одну, две или даже три (как омар) пары максилл. За эти важные различия отвечают небольшие изменения в географии эмбрионов. Авероф и Пател обнаружили, что у обладателей ногочелюстей зоны экспрессии двух Hox-белков (номера 8 и 9) сдвинуты назад соответственно на один, два и три сегмента по сравнению с ракообразными, у которых ногочелюсти отсутствуют (рис. 6.7). Величина сдвига точно коррелирует с количеством ногочелюстей. Более того, по-видимому, этот сдвиг и образование ногочелюстей в ходе эволюции происходили у ракообразных несколько раз независимым образом, что говорит о том, что сходные функциональные адаптации у разных животных достигаются за счет использования одного и того же механизма. Подробнее о значении повторяющихся изменений я расскажу в следующей главе.

Сдвиг зон экспрессии Hox-генов стал причиной выраженных различий тела по главной оси таких групп современных членистоногих, как пауки, ракообразные, многоножки и насекомые. С большой долей вероятности можно предположить, что то же самое происходило и в кембрийском периоде, поскольку регионализация тела и специализация конечностей наблюдаются у всех ископаемых членистоногих того времени. Блоки сходных сегментов у разных видов ископаемых членистоногих определенно соответствовали зонам экспрессии конкретных Hox-генов (рис. 6.7). Возникновение новых типов конечностей и сегментов в эволюции членистоногих связано с появлением у их эмбрионов большего числа уникальных зон экспрессии отдельных Hox-генов и их комбинаций. Таким образом, относительный сдвиг зон экспрессии Hox-генов является одним из механизмов, лежащих в основе закона Уиллистона: для специализации повторяющихся частей тела требуется, чтобы они находились в зонах экспрессии разных Hox-генов.

Сдвиг зон экспрессии Hox-генов происходил не только у членистоногих. Тот же механизм лежит в основе формирования анатомического разнообразия и нашей с вами ветви — позвоночных.

Сборка позвоночных: больше Hox-генов и много сдвигов

Эволюцию нашей семейной линии тоже можно проследить до самого кембрия. Мы относимся к позвоночным животным, которые, в свою очередь, принадлежат к хордовым — животным, обладающим хордой. Кроме позвоночных, к хордовым также относятся оболочники (такие как асцидии) и головохордовые (такие как ланцетники). Хордовые — вторичноротые животные (рис. 6.8). Долгое время наиболее изученным древним хордовым животным оставалась Pikaia из отложений в Берджесских сланцах, однако недавние находки в Чэнцзяне показали, что позвоночные существовали еще раньше, примерно 520 млн лет назад, причем их анатомия была на удивление сложной.

Рис. 6.8. Эволюционное древо хордовых животных и увеличение числа кластеров Hox-генов в ходе эволюции позвоночных. Общий предшественник всех хордовых имел один кластер генов, как и ныне живущие оболочники и головохордовые. Удвоение кластера генов в ходе эволюции происходило несколько раз — в линии бесчелюстных рыб, в линии хрящевых рыб (акул), а также у миног. Поскольку эволюционное происхождение кембрийского позвоночного Haikouichthys точно неизвестно, его ветвь принято изображать отходящей от древа одновременно с ветвями миксиновых рыб, миног и хрящевых рыб. Рисунок Джоша Клейса.


Образцы ископаемой бесчелюстной рыбы Haikouichthys ercaicunensis демонстрируют наличие головной лопасти с глазами, возможно, носовые отверстия, десять или более отдельных позвонков, жабры, а также спинной и брюшной плавник. Такое строение намного сложнее, чем у более позднего вида Pikaia, что говорит о том, что в начале кембрийского периода эволюция позвоночных животных продвинулась уже достаточно далеко. Эти недавние открытия подчеркивают чрезвычайную важность поиска ископаемых животных в уже известных и в еще не исследованных отложениях. Датировка первого появления той или иной группы животных или тех или иных признаков всегда очень примерная, поскольку последующие находки могут отодвинуть ее назад. В данном случае новые находки позволили отодвинуть происхождение группы на 15 млн лет назад. Кроме того, хотя в начале и середине кембрийского периода позвоночные не были самой многочисленной группой животных, их обнаружение в Чэнцзяне позволяет вписать хищника Haikouichthys в кембрийскую экосистему.

Появление позвоночных сопровождалось изобретением и модификацией многих структур и систем тела, включая более сложный мозг, органы чувств, хрящи, скелет и череп. Множество последующих эволюционных новшеств привело к формированию пресмыкающихся, земноводных, птиц и млекопитающих, которых мы видим сегодня. Как и в случае членистоногих и лопастеногих, нам хотелось бы знать, определялась ли ранняя эволюция позвоночных в кембрийском периоде тем же набором генов развития, которым обладали и другие группы животных, или же происхождение предковых позвоночных связано с какими-то изменениями в наборе генов развития.

Мы не можем изучить гены Haikouichthys, однако мы можем проанализировать гены некоторых современных животных, занимающих ключевые позиции на филогенетическом древе хордовых и вторичноротых, что позволит оценить генетическую сложность древних позвоночных. Одна из ключевых групп — головохордовые. У этих животных нет таких признаков позвоночных как череп или скелет, но они являются сестринской группой по отношению к позвоночным, точно так же как современные онихофоры являются сестринской группой по отношению к членистоногим. Набор генов Hox-кластера у головохордовых должен соответствовать набору генов Hox-кластера последнего общего предшественника головохордовых и позвоночных.

Единственным ныне живущим представителем головохордовых является ланцетник. Это животное длиной 5-8 см можно встретить в заливе Тампа во Флориде и в некоторых других местах. Когда Джорди Гарсия-Фернандес и Питер Холланд впервые занялись изучением его Hox-генов, они обнаружили всего один Hox-кластер. Вспомните, что современные позвоночные, такие как мышь и человек, имеют по четыре кластера, в сумме содержащих 39 генов. Изучение генов ланцетника позволяет сделать вывод о том, что увеличение числа кластеров Hox-генов произошло уже после разделения линий позвоночных и головохордовых (в кембрийском периоде или несколько раньше). Мы также знаем, что другие вторичноротые, такие как оболочники и иглокожие, обладают единственным кластером Hox-reнов. Значит, в то время как все без исключения оболочники и иглокожие в кембрийском периоде и позднее эволюционировали при наличии единственного кластера, содержащего десять Hox-генов, позвоночные увеличили число Hox-генов.

Когда в ходе эволюции позвоночных увеличилось число кластеров Hox-генов? Стало ли это событие толчком к эволюции позвоночных? Чтобы ответить на эти вопросы, пришлось изучить множество современных видов, относящихся к разным группам на разных ветвях филогенетического древа позвоночных. Все млекопитающие, птицы и некоторые рыбы, включая древнего глубоководного целаканта, имеют по четыре кластера Hox-генов. У нас есть все основания заключить, что у общего предка этих челюстных позвоночных также было четыре кластера Hox-генов.

Однако более примитивные современные позвоночные, такие как минога, имеют меньшее число Hox-кластеров. Детальное изучение Hox-кластеров миноги и их сравнение с Hox-кластерами костистых рыб и млекопитающих показало, что наши четыре кластера — результат двух раундов дупликации на ранних этапах эволюции позвоночных. Первое удвоение случилось после расхождения головохордовых и предков миног, а второе — за некоторое время до появления костистых рыб. Посмотрим еще раз на наше семейное древо (рис. 6.8). Поскольку образцы из Чэнцзяня являются бесчелюстными рыбами, мы можем предположить, что они имели всего один или два кластера Hox-генов.

Выясняется, что различие в числе кластеров Hox-генов у позвоночных отражает различие в общем количестве генов развития у этих животных. В ходе эволюции позвоночных произошло удвоение не только Hox-кластера, но и многих других генов развития. Это могло произойти, например, при дупликации всего генома или его крупного фрагмента. Увеличение числа генов развития у высших позвоночных говорит о том, что на ранних этапах эволюции позвоночных появление новых генов сыграло значительную роль в эволюции плана строения. Одним из показателей эволюции анатомии хордовых является количество клеток разных типов. Так вот, у человека и других высших позвоночных гораздо больше типов клеток, чем у головохордовых: у этих последних нет клеток, из которых у нас состоят хрящи, кости, голова и некоторые органы чувств. Это означает, что большее количество генов развития коррелирует с большим количеством клеточных типов и более сложной организацией тканей, поскольку большее количество генов позволяет генерировать большее количество инструкций в ходе эмбрионального развития.

Однако главной движущей силой последующей эволюции высших позвоночных было не увеличение количества генов. Важно помнить, что эволюция земноводных, пресмыкающихся, птиц и млекопитающих происходила при наличии все тех же четырех кластеров Hox-генов. Лягушки и змеи, динозавры и страусы, жирафы и киты эволюционировали с одним и тем же набором Hox-генов. Таким образом, общее число Hox-генов ничего не говорит нам об эволюции форм животных. Разнообразное строение этих видов, как и в случае членистоногих, стало результатом изменения географии эмбрионов за счет сдвига зон экспрессии Hox-генов, а не результатом увеличения числа этих генов.

Например, у позвоночных переход от одного типа позвонков к другому — шейные/грудные, грудные/поясничные, поясничные/крестцовые, крестцовые/хвостовые — соответствует границам между зонами экспрессии определенных Hox-генов. Передняя граница экспрессии одного из генов, Hoxc6, совпадает с границей между шейным и грудным отделами у мыши, курицы и гуся, хотя у всех этих животных разное количество шейных позвонков. Таким образом, у этих животных произошло смещение зоны экспрессии гена Hoxc6 по отношению к номеру позвонка (рис. 6.9). У змей это смещение выражено еще сильнее. У них нет четкой границы между шейным и грудным отделами позвоночника, и экспрессия Hoxc6 продолжается до самой головы. Ко всем этим позвонкам присоединены ребра, а это означает, что все эти позвонки грудного типа, однако при этом у них есть еще и признаки шейных позвонков. Отсюда следует, что удлинение тела змеи произошло за счет потери шеи и удлинения грудного отдела в результате сдвига зон экспрессии Hox-генов.

Рис. 6.9. Сдвиг зон экспрессии Hox-генов также способствует эволюции позвоночных. Разные группы позвоночных животных отличаются друг от друга количеством шейных позвонков: у мыши шея короткая, у гуся длинная, а у питонов шеи практически нет, а есть просто длинное туловище. Граница между шейными и грудными позвонками у всех позвоночных совпадает с границей экспрессии гена Hoxc9, однако у разных животных это положение относительно всего тела различается. На этом уровне у всех четвероногих позвоночных возникают передние конечности, а у змей эта граница сдвинута вперед к основанию черепа и конечности не развиваются. Рисунок Лианн Олдс.


Одновременно удивительно и логично, что эволюция формы тела представителей двух наиболее успешных и разнообразных групп животных — членистоногих и позвоночных — происходила по одному и тому же сценарию, связанному со сдвигом зон экспрессии генов Hox вдоль основной оси эмбриона. Самое главное здесь — что мы ухватили суть крупномасштабных изменений в строении животных. Теперь мы можем рассматривать отдельные группы животных — насекомых, пауков и многоножек или птиц, млекопитающих и пресмыкающихся, а также их давно вымерших предков — не как нечто уникальное, а как вариации на общую тему. Лучше всего эту мысль сумел выразить блестящий писатель и философ второй половины восемнадцатого века Дени Дидро (см. цитату в начале главы), и ее же почти сто лет назад сформулировал в своем законе Сэмюель Уиллистон. Теперь мы знаем общий механизм и, следовательно, очень точное объяснение одной из важнейших тенденций в эволюции животных.

Переключатели и сдвиг зон экспрессии

Давайте чуть подробнее исследуем эту эволюционную тенденцию и посмотрим, что же стоит за Hox-генами и географией эмбриона и почему происходит сдвиг зон экспрессии Hox-генов и изменение анатомии.

Все дело в переключателях. Именно генетические переключатели Hox-генов контролируют координаты экспрессии этих генов у эмбриона. Эволюционные сдвиги зон экспрессии Hox-генов происходят из-за изменений нуклеотидных последовательностей переключателей.

Например, позвоночник мыши состоит из семи шейных и тринадцати грудных позвонков, тогда как позвоночник курицы — из четырнадцати шейных и семи грудных позвонков. Передняя граница зоны экспрессии гена Hoxc8 в эмбрионе курицы расположена гораздо дальше от головы, чем в эмбрионе мыши. Положение границы зоны экспрессии гена Hoxc8 в ранних эмбрионах мыши и курицы контролируется специфическим переключателем. Различия в последовательности ДНК этого переключателя у мыши и курицы как раз и отвечают за разницу в относительном расположении зоны экспрессии гена Hoxc8 у этих животных.

Эволюция переключателя гена Hoxc8 в этих двух группах позвоночных иллюстрирует важнейшую роль переключателей в эволюции животных. Изменение нуклеотидной последовательности переключателя приводит к изменению географии эмбриона без нарушения функциональной целостности белкового продукта гена развития. В данном случае изменение переключателя гена Hoxc8 приводит к изменению числа позвонков определенного типа. Белок Hoxc8 играет ключевую роль и в других тканях, поэтому мутации кодирующей последовательности гена могли бы нарушить все его функции. Изменение специфического переключателя позволяет изменять специфические модули, не влияя на другие части тела.

Та же самая стратегия лежит в основе изменений плана строения ракообразных и других членистоногих, о которых я говорил раньше. Сдвиг зоны экспрессии Hox-гена на один, два или три сегмента происходит в результате того, что переключатели начинают активировать экспрессию Hox-генов в немножко других координатах, но это не приводит к нарушению функции Hox- белка.

Возвращаемся к кембрийскому взрыву: генетический потенциал и экологические возможности

Новые данные о ранней эволюции животных, полученные методами эво-дево, содержат в себе три важных элемента. Во-первых, несмотря на практически полное отсутствие палеонтологических данных, относящихся к докембрийскому периоду, можно сказать, что последним общим предком двух основных ветвей древа животных было существо с довольно сложным генетическим и анатомическим строением. Во-вторых, нам точно известно, что это существо обладало полным набором генов развития, необходимых для построения тела, но этот потенциал не использовался на протяжении довольно долгого времени. В-третьих, этот потенциал генов развития в значительной степени реализовался в кембрийском периоде и несколько позднее в результате эволюции переключателей и генетических сетей, а также в результате сдвига зон экспрессии Hox-генов.

Если кембрийский взрыв не был спровоцирован появлением набора генов развития, то что же стало его причиной? Все более широкое распространение получает идея о том, что кембрийский взрыв был экологическим явлением. Начавшаяся эволюция более крупных и более сложных животных повлекла за собой эволюцию еще более крупных и еще более сложных животных и т.д. По мере развертывания "взрывной волны" давление экологических взаимодействий и конкуренции между все более разнообразными видами животных стимулировало эволюцию более сложных структур, таких как фасеточные и камерные глаза, членистые конечности для ходьбы, плавания и ловли добычи, сердца для обеспечения циркуляции крови в более крупных телах, а также лучше дифференцированные головной, грудной и хвостовой отделы тела для большей подвижности и лучшей защиты. Генам развития в этом сценарии отводилась очень важная роль, однако сами по себе эти гены были лишь инструментом, а не движущим фактором эволюции. События кембрийского периода определялись глобальной экологической ситуацией.

За кембрийский период многие поначалу небольшие группы животных достигли невероятного разнообразия. После этого произошло еще множество "малых взрывов", которые можно связать с использованием новых экологических возможностей. После выхода позвоночных и членистоногих животных (а также растений) на сушу началось ее стремительное освоение. Во многих случаях освоение суши стало возможно благодаря структурным инновациям и изменениям в строении отдельных частей тела, позволившим изменить образ жизни и способствовавшим дальнейшей экспансии. В следующей главе мы поговорим о некоторых важнейших новшествах, которые фактически создали новые таксоны животных.

Эволюция конечностей сыграла важнейшую роль в возникновении изображенных здесь групп животных и освоении ими новых территорий. Рисунок Джейми Кэрролл.

Глава 7. Малые взрывы. Крылья и другие революционные изобретения