Биоэнергетика. Мир и Россия — страница 1 из 19

Евгений ПанцхаваБиоэнергетика. Мир и Россия. Биогаз: Теория и практика: монография

Предисловие

Предлагаемая читателю монография, прежде всего, посвящается выдающимся отечественным ученым и специалистам, стоявшим у истоков создания отечественной биоэнергетики задолго до ее активного развития за рубежом: академикам АН СССР – В.Н. Шапошникову, А.И. Опарину, Н.М. Сисакяну, Н.Д. Иерусалимскому, Е.Н. Кондратьевой; членам-корреспондентам АН СССР – С.И. Кузнецову, Н.В. Букину, И.В. Березину; академикам АН Лат ССР – М.Е. Бекеру, У.Э. Виестуру; профессорам – В.Я. Быховскому, В. А.Зуеву, Л.Л.Гюнтер, А. А. Ковалеву, Л.Л. Гольдфарбу, Г.Д. Ананиашвили, В.В. Алексееву; инженеру-технологу И. С. Логоткину, инженерам – В. А. Пожарнову, Н. И. Майорову, И.И. Школе, Т.Я. Андрюхину, В.М. Шрамкову, П.И. Гридневу, В.П. Лосякову, И.В. Семененко, В.Б.Костяку, Л.И.Монгайту, специалистам ГКНТ СССР В.И. Доброхотову, М.И. Фугенфирову, Н.Л. Кошкину, И.Х. Нехорошему, Скабиеву Е.М., Шкапкину В.И. и другим.

В книге представлены зарубежные и отечественные достижения по всем современным направлениям бурно развивающейся Биоэнергетики как самостоятельного сектора общей мировой энергетики, ее теоретическим основам, технологиям, оборудованию и практическому применению..

Большое внимание уделяется теории и практики природного метаногенеза как сложнейшего биологического процесса, активно участвующего в кругообороте углерода в биосфере, роли этого процесса в эволюции живого на земле, его глобальному участию в образовании ископаемых углеводородов.

В книге в значительном объеме использованы и цитируются работы, обзоры и монографии выдающихся зарубежных ученых и специалистов как в области биоэнергетики, так в области биологического метаногенеза и его практического применения.

Книга рекомендуется для специалистов России, работающих в указанной области, для студентов, аспирантов и преподавателей кафедр, факультетов, вузов, изучающих и развивающих отечественную биоэнергетику.

Автор.

Часть перваяБиоэнергетика: мир и Россия

Глава 1. Введение

1.1. Биоэнергетика – самостоятельный сегмент мировой энергетики

«Бурить на глубинах приходится потому, что все сложнее найти новые месторождения. И чем труднее добыть нефть, тем больше ущерб от добычи окружающей среде. Проблема принимает глобальные масштабы, нужно искать новые решения, которые будут в гармонии с природой, и которые можно будет контролировать».

Синтия Уорнер – топ-менеджер ВР.

Сжигая уголь, практически сжигают только углерод [1-45]. При сжигании нефти на каждый атом углерода приходится два атома водорода, т. е. на каждый потребленный атом углерода нефти выделяется вдвое больше энергии, чем при сжигании угля. А это значит, что при полной замене нефти или газа на уголь его необходимо будет сжигать вдвое больше, что приведет к резкому увеличению углекислого газа в атмосфере. В 1958 г. количество углекислого газа в атмосфере составило 315 млн. т, а в 1980 г. 338 млн. т, т. е. увеличилось за 22 года на 7 %, тогда как в 1880 г. эта цифра составляла 290 млн. т, или за 100 лет концентрация CO2 в атмосфере увеличилась всего на 15 %. Таким образом, темпы роста концентрации CO2 в атмосфере с каждым годом увеличиваются, что приводит к усилению «парникового эффекта» и повышению температуры на земном шаре.

Температура атмосферы Земли увеличивается не только за счет усиления "парникового эффекта", но, как впервые указал на это лауреат Нобелевской премии, един из создателей отечественной атомной энергетики, создатель теории цепных реакций академик Н. Н. Семенов, и благодаря постоянно увеличивающемуся тепловому загрязнению.

Постоянное сжигание в огромных количествах ископаемых топлив или создание других мощных топливных носителей приводит к постоянному выбросу тепла в биосферу. Сегодня человечество за счет различных источников энергий производит до 5 1019 кал тепла в год, что составляет 1/20 000 часть падающей солнечной энергии на Землю или 1/5000 солнечной энергии, поглощаемой массой Земли. В среднем производство энергии увеличивается на 5 % в год. При таких темпах через 200 лет человечество будет производить столько же тепла, сколько дает Солнце, что скажется на изменении теплового баланса Земли. [1–2]


Рис. 1–1. Н.Н. Семенов. 1896–1986 гг.


Перегрев Земли на 3–4 °C может привести к серьезным негативным последствиям.

Какой же вывод следует из всего вышесказанного?

Существующим технологиям производства энергии необходимо противопоставить технологии, основанные на использования экологически чистой энергии, при сохранении круглогодичного баланса СО2 в атмосфере и при минимальном тепловом загрязнении атмосферы.

В качестве таких основных источников энергии на Земле в будущем следует рассматривать, с одной стороны, ядерную, получаемую как в результате деления тяжелых ядер, так и синтеза легких, с другой – солнечную энергию [1–3].

Благодаря прямому использованию различных форм солнечной энергии (солнечного тепла и фотоэлектрического эффекта, энергии ветра и процесса фотосинтеза) можно избежать теплового загрязнения, твердых и газообразных выбросов в атмосферу, и существенно уменьшать потребление ископаемых топлив [1–4].

Преимущества использования солнечной энергии очевидны:

Во-первых, исключается тепловое загрязнение среды, потому что не выделяется дополнительная тепловая энергия. Единственным источником тепловой энергии служит Солнце.

Во-вторых, при использовании солнечной энергии исключается возникновение побочных продуктов и отходов. Использование солнечной энергий доступно повсеместно, что позволяет лучше использовать природную среду.

Ветровая энергия – производная солнечной энергии – также не загрязняет окружающую среду.

И наконец, продукт фотосинтеза – биомасса, конвертирование которой в топливо возможно несколькими путями, причем, некоторые из них самым тесным образом связаны с охраной окружающей среды.

Все перечисленные модификации солнечной энергии и ее производные не ограничены во времени и будут действовать, пока светит Солнце.

Очень тесно с проблемами современной энергетики смыкается другая стоящая сегодня перед человечеством проблема – это охрана окружающей среды. Успехи современной науки и техники достаточно наглядно демонстрируют, что эти две проблемы могут решаться одновременно. Речь идет о разработке научных методов и технологий получения энергии и топлива при одновременном решении вопросов, связанных с охраной окружающей среды из-за непрерывно поступающих в биосферу органических загрязнений.

Поэтому интенсивное и рациональное использование человечеством падающей на Землю экологически чистой солнечной энергии является одним из перспективных магистральных путей получения необходимой энергии и топлива. Важное место принадлежит биологический методам конверсии, При фотосинтезе энергия Солнца конвертируется а энергию химических связей органических веществ, соединяемых общим термином "биомасса". Термин "биомасса" охватывает все виды веществ растительного и животного происхождения, продукты жизнедеятельности человека и животных, органические отходы перерабатывающей промышленности и сельского хозяйства.

Скрытую химическую энергию можно с помощью ряда биологических или термо-химиических процессов превратить в удобные для использования виды топлива или энергии. [1-45].

Топливно-энергетический комплекс России играет важную роль в экономике страны. На ее территории сосредоточено 1/3 мировых запасов природного газа, 1/10 нефти, 1/5 угля и 14 % урана. [1–1]. Через семь лет (2020 г.) добыча нефти в России может откатиться к уровню 2004 года, прогнозируют эксперты «Российской Газеты». Если в 2012 году уровень добычи нефти составил 518 миллионов тонн, то через пять-семь лет этот показатель может сократиться до 420–450 миллионов тонн. И это намного ниже, чем официальный прогноз [1-46]. Современные проблемы энергетики могут быть решены только при рациональном использовании всех существующих на Земле и околоземном пространстве источников топлива и энергии [1-45].

Биоэнергетика – фундаментальное и прикладное направление возникло на границе современных биотехнологий, химической технологии и энергетики, изучает и разрабатывает пути биологической конверсии солнечной энергии в топливо и биомассу и биологическую и термохимическую трансформацию последней в топливо и энергию[1-45].

Внедрение в народное хозяйство достижений биоэнергетических технологий прежде всего зависит от решения задач, связанных с интенсификацией процессов конверсии органического сырья в топливо и крупномасштабным производством самой биомассы.

Только при серьезном фундаментальном исследовании можно создать высокоэффективную отрасль народного хозяйства, отвечавшую воем требованиям современного научно-технического прогресса [1-45].

Почти треть населения Земли (около 2 млрд. чел.) все еще использует биомассу в виде древесины как основной источник топлива.

В любой форме биомасса является возобновляемым, единственным доступным, простым и дешевым источником энергии для большинства сельских жителей планеты. В Эфиопии, Непале, Танзании, в Сибири и Амазонии, в Северной Канаде и на островах Полинезии, Микронезии, в Малайзии благодаря биомассе удовлетворяется 80–90 % потребностей в топливе. Даже в таких развитых странах, как США, Швеция, Норвегия, Канада, доля энергии, получаемой из биомассы, в общем объеме энергии составляет 4-10 %.

Благодаря незаурядному потенциалу, сжатым срокам окупаемости проектов, экологическим преимуществам биомасса, вероятно, является одним из приоритетных видов среди других возобновляемых источников энергии в большинстве стран. В конце XX в. общий объем мировых первичных энергоресурсов составил около 8,5 млрд. т., из которых примерно 7 млрд. т. приходится на долю ископаемого органического топлива. Совокупно, энергетический потенциал всей растительности нашей планеты составляет около 70 млрд. т., т. е. в 10 раз превышает использование ископаемого топлива. Доля древесины, которую используют для получения энергии, составляет: в Дании – 61 % от общего объема вывозимой из лесов древесины, во Франции – 56 %, Испании – 44 %, Швейцарии – 56 %. В среднем в Европе темпы ее использования растут на 7,3 % ежегодно (в Швеции – 10,2 % в год, в Дании – 9,2 %, Франции – 8,9 %, Испании – 7,7 %).


Таблица. 1–1

Мировые запасы и добыча нефти и газа. Прогноз потребления к 2009 и 2050 гг.


Таблица.1-2

Запасы нефти [1-47]


Сейчас биомасса покрывает в среднем 15 % общего потребления первичных энергоресурсов в мире: в развивающихся странах – 48 %, в промышленно развитых странах – в среднем 2–3% (США – 3,2 %; Дания – 6 %; Австрия – 12 %; Швеция – 18 %; Финляндия – 23 %).

По оценке экспертов ООН численность населения планеты к 2050 г. может увеличиться до 9.2 млрд. человек. Если к этому времени потребление моторных топлив и природного газа на душу населения всей планетой возрастет до современного уровня Европейского Союза, то в год придется добывать до 18.3 млрд. тонн нефти или 16 % от разведанных к настоящему времени запасов, а природного газа – до 12 трлн. куб. м или 6.7 % от разведанных запасов. То есть нефти хватит на 6-10 лет, газа на 15–20 лет. (Таблица 1)

Хотя как показали исследования автора, нефти и газа может быть в десятки раз больше, чем разведано. Причина этому: несовершенство технологий нефте– и газоразведки, большие глубины залегания, отсутствие соответствующего оборудования.[2]. Такого же мнения придерживается ряд российских экспертов.

В статье «Кризис изобилия» Алексей Михайлов – эксперт Центра экономических и политических исследований (ЭПИцентр), отмечает, что «… объем энергоносителей-углеводородов ограничен, рано или поздно, если его сжигать, то он кончится. Но это только кажущаяся очевидность.[1-48].

Во-первых, разведанных запасов углеводородов при нынешних объемах добычи хватит: нефти и газа – на 50 лет, угля – на 500. А за эти 50/500 лет будут разведаны новые запасы… Из этой кастрюли, которую природа готовила нам сотни миллионов лет, еще черпать и черпать. Впереди шельфы, глубинное бурение, сланцы…

Мы за один нефтяной век только пенку сверху сняли.

Во-вторых, как это ни парадоксально, но именно вопрос с энергией самый легко решаемый.

Энергия универсальна, ее добывать можно почти из всего и передавать на расстояние не очень сложно и дорого. А Земля – принципиально разомкнутая система, она получает колоссальное количество энергии от Солнца, а кое-что – и от Луны. И напрямую – в виде тепла и света, и опосредованно – в виде ветра, текущей воды, приливов и т. д. И люди столетиями использовали эту энергию (например, ветряные и водяные мельницы).

Полный отказ от ископаемых источников энергии (ИИЭ, сегодня они дают 85 % мирового энергопотребления) и переход на возобновляемые (ВИЭ) – это вопрос не какого-то отдаленного футуристического будущего. Есть расчеты, что уже к 2030 году можно перевести 100 % мировой энергетики с ископаемого топлива на ВИЭ – ветер, вода и солнце. 50 % мировой энергетики будут давать 4 млн. ветротурбин.

В 2009 году в США свыше 50 % новых энергетических мощностей было создано за счет возобновляемых источников. В 2009 году инвестиции в новые возобновляемые источники энергии в мире превысили $150 млрд. Переход на возобновляемые источники энергии – это совершенно практический вопрос, отработанный технологически и связанный сегодня только экономическими ограничениями.

Как только ИИЭ станут достаточно дороги – переход произойдет автоматически. Он уже идет, несмотря на то, что пока еще ВИЭ недостаточно рентабельны и очень капиталоемки.

Совершенно прав был министр нефтяной промышленности Саудовской Аравии Заки Ямани еще в 70-е годы сказавший: «Каменный век закончился не потому, что в мире кончились камни. Также и нефтяной век закончится не потому, что у нас кончится нефть». Энергетический голод Земле не грозит. [1-48].

За последние 20 лет уровень добычи нефти в Штатах снизился: так, в 1972 г. он составлял 528 млн. т, в 1995 г. – 368 млн. т, а в 2000 г. – только 350 млн. т, что является следствием возросшей конкуренции между американскими производителями и импортерами более дешевой зарубежной нефти.

Из потребляемых 23 млн. б/с (1040 млн. т/год) в США добывается только 8 млн. б/с, а остальная часть импортируется – 680 млн. т/год. При этом США по-прежнему занимают второе место в мире по объему добываемой нефти (после Саудовской Аравии). Доказанные запасы нефти США составляют около 4 млрд. тонн (3 % от мировых запасов).[1-49].

В декабре 2012 г. чистый импорт нефти в США сократился до 5,98 млн. барр. в сутки (270 млн. т/год) – это самое низкое значение с февраля 1992 года. Чистый импорт нефти в Китай в декабре вырос до 6,12 млн. бар в сутки (277 млн. т/год), согласно данным таможни Китая. В 2012 году Китай увеличил импорт нефти на 6,8 % – до 271 млн. тонн – по сравнению с предыдущим годом.

Сейчас Россия является третьим по величине поставщиком сырой нефти в КНР и уступает по этому показателю только Саудовской Аравии и Анголе. Стремительное развитие китайской экономики неизбежно ведет к увеличению спроса на энергоносители. К 2015 г., полагают эксперты, спрос Китая на нефть может возрасти до 540 млн. тонн в год.[1-50].

Биоэнергетика считается основной тенденцией развития топливного рынка. Ожидается, что она в ближайшие 30–40 лет станет доминирующей в развитии мировой системы энергообеспечения. В связи с приближающейся угрозой истощения мировых запасов углеводородов в качестве основной тенденции развития топливного рынка международным экспертным сообществом заявлена биоэнергетика, которая должна стать фундаментом для начала новой эры энергетики. В ближайшие 30–40 лет именно биоэнергетика станет доминирующей в развитии мировой системы энергообеспечения.


Таблица. 1-3

Мировые запасы и добыча нефти и газа. Прогноз потребления нефти Китаем, Индией и Индонезией к 2020 – 2040 г.г.


Таблица. 1-4

Десять стран – лидеры, импортирующие нефть (млрд. баррелей 2006 г.).

[1-51].


Таблица. 1-5

Десять стран – обладатели крупнейшими доказанными запасами нефти (млрд. баррелей, 2006 г.)


Во второй половине ХХ века мир столкнулся с новой для себя экологической проблемой, которая может принять угрожающие формы. Это выбросы CO2 в атмосферу Земли. Они составляют до 8 млрд. т ежегодно, из них экосистемы Земли способны поглотить лишь половину. Остальное накапливается в атмосфере и последствия этого пока не ясны. Однако очевидно, что столь грубое вмешательство в сложившуюся экосистему, когда нарушается экологическое равновесие, не останется безнаказанным для человечества.

В 1997 году 105 государств подписали в г. Киото протокол, направленный на уменьшение выбросов в атмосферу избыточного углекислого газа, образующегося при сжигании нефти, угля, ископаемого газа, а также продуктов их переработки.

Моторные топлива при сгорании вносят существенный вклад в нарушение баланса углекислого газа в атмосфере. Использование в составе моторных топлив компонентов, произведенных из возобновляемого сырья [1–1] и в первую очередь оксигенатов [1-2– 1–4] позволяет уменьшить его вредное воздействие на окружающую среду.

В 2003 году Европейская комиссия предложила директиву [1–5], которая поощряет государства, являющиеся членами Европейского Союза (ЕС), широко применять биокомпоненты в моторном топливе. В 2010 году планировалось довести содержание биокомпонентов в моторном топливе, поступающем на рынок ЕС, до 6,75 %.

Существующий парк автомобилей и транспортных средств, в которых используются стандартные двигатели, не позволит в ближайшее время начать применять моторные топлива, полностью состоящие из биокомпонентов, т. е. очевидно, что вырастет роль смесевых моторных топлив, часть которых будет изготовлена из нефти, а часть из возобновляемого сырья.

Использование не нефтяного сырья не только расширяет ресурсы топлив, но часто позволяет улучшить их экологические характеристики.

В качестве биотоплив наиболее широкое распространение получили биоэтанол и биодизель. [1-52].

Современное мировое сообщество стоит перед необходимостью решения нескольких глобальных проблем с целью создания в ближайшие десятилетия для каждого члена общества независимо от места его обитания достойных комфортных условий жизни и трудовой деятельности.

Особое место среди этих проблем занимают:

Экология. Каждый житель планеты имеет право на максимально полную экологическую безопасность, то есть быть обеспеченным чистой атмосферой (без вредных химических и тепловых выбросов), чистой водой (без различных вредных стоков) и чистой землей для получения экологически чистого полноценного и естественного продовольствия.

Необходимо:

• сохранить баланс диоксида углерода в кругообороте углерода в биосфере без излишних выбросов СО2 и других парниковых газов (Метана) в атмосферу для недопущения теплового перегрева Земли.

• создавать такие производственные технологии в промышленности и сельском хозяйстве, которые бы минимизировали количество сточных вод и других отходов, и, в идеале, вели бы к созданию безотходных технологий.

2. Энергетика. Решение задач, поставленных в п.1 потребует резкого увеличения производства энергии. По мнению академика Е. Велихова в ближайшие 2–3 десятилетия потребление и, соответственно, производство энергии возрастет на 60 % от его мирового производства и потребления в начале 21 века. Увеличение производства энергии должно проходить на фоне создания экологически чистых энерготехнологий, повышения к. п. д. используемых топлив, создания новых постоянно возобновляемых источников топлива и энергии, полного перевооружения промышленности и сельскохозяйственного производства на энергосберегающее оборудование, машины и технологии.

3. Агрохимия и сельскохозяйственное производство. Обеспечение мирового сообщества экологически чистым продовольствием в соответствии с принятыми научно обоснованными нормами потребует:

• повышения урожайности всех без исключения основных продовольственных культур;

• повышения плодородия почв;

• постепенного повышения экологической чистоты почв;

• максимального перехода на применение экологически чистых высокоэффективных органических удобрений при минимальном использовании сбалансированных по каждому региону и почвам минеральных удобрений.

4. Решение социальных проблем. Экологическая безопасность и более высокая энерговооруженность человека должна привести к решению сложнейших социальных проблем (как в странах постиндустриального общества, так и в развивающихся странах):

• улучшение условий быта и труда;

• снижение смертности и доведение детской смертности до минимума;

• снижение заболеваемости;

• повышение продолжительности физиологической и умственной активной жизни.

Решение всех вышеперечисленных проблем и задач, поставленных мировым сообществом, тесно связано с энергичным развитием одного из современных направлений глобальной энергетики – биоэнергетики.

Биоэнергетика – или использование фотосинтезированной биомассы и продуктов ее технической и физиологической переработки и потребления – сопровождала и сопровождает человека в течение всей его эволюции. Именно биомасса и, в частности, ее сжигание и получение тепла, первый и важный шаг в эволюция и развитии homo sapiens.

Многие виды биоэнергетики известны человеку давно: сжигание дров, производство биогаза, производство древесного дегтя и древесного угля, производство спирта (вина).

Задачи современной науки и техники:

• превратить эти древние виды биоэнергетики в более энергоэффективные и рентабельные;

• создавать новые биоэнергетические технологии;

• получить новые виды биосырья для получения топлива и энергии;

• создавать новые энерготехнологии, сочетающие рациональное использование традиционных видов топлива и энергии с применением различных типов биомассы для производства экологически чистых видов тепловой и электрической энергии.

При условии, если к 30-50-м годам настоящего столетия в России электроэнергия и часть тепловой энергии будут производится АЭС, ГЭС и ВИЭ (ветер, вода, солнце, биомасса, приливы и т. д.), то двигатели внутреннего сгорания (мобильные и стационарные) будут, по-прежнему, использовать моторные топлива, в значительной степени получаемые из ископаемых углеводородов (нефть и природный газ).

К середине века потребление нефти в России на душу населения может достигнуть уровня США и тогда дефицит по нефти для РФ может составить более 300 млн. т в год. Этот недостаток необходимо будет заполнить производством альтернативных видов моторных топлив.

Современный мировой транспорт потребляет около 29 % всех энергетических ресурсов. 97–99 % общего потребления энергоресурсов всеми видами транспорта обеспечивается нефтью, причём до 49–50 % от расходуемых нефтепродуктов идёт на производство моторных топлив.


Таблица. 1-6

Нужна ли альтернативная энергетика России? Что Россия будет продавать и сколько нужно добывать нефти в 2030–2050 г.?


До конца текущего столетия двигатели внутреннего сгорания (ДВС) сохранят ведущую роль в транспортной энергетике [4]. То обстоятельство, что разведанные мировые запасы нефти ограничены и неравномерно распределены по различным регионам планеты, создаёт предпосылки для разработки промышленных технологий получения моторных топлив из сырья не нефтяного происхождения. Получаемое из нетрадиционных видов сырья жидкое и газообразное топливо для мобильных установок называют альтернативным моторным топливом [1–5]. Исследования в области производства и применения альтернативного моторного топлива в последнее время активно развиваются в разных странах мира.

Одним из видов альтернативного моторного топлива является биотопливо. Его получают в результате переработки различных видов биомассы – от древесины до отходов агропромышленного комплекса – методами механической деструкции, термохимии и биотехнологий с использованием технологий каталитического синтеза.

Биотопливо подразделяют на жидкое (для ДВС, например, биоэтанол, биометанол, биобутанол, биодизель, биобензин, биокеросин, ДМЭ), твёрдое (дрова, брикеты, топливные гранулы, щепа, солома, лузга, древесный уголь) и газообразное (биогаз – биометан, биоводород, син-газ).

Под биомассой понимается материал биологического происхождения: фотосинтез, далее флора и фауна, а также разнообразные органические отходы технологического, зоотехнического и физиологического происхождения. Поэтому одна из важнейших задач России заменить моторные топлива (бензин, керосин, дизельное топливо) и топочный мазут нефтяного происхождения на углеводороды биологического происхождения.


Современная биоэнергетика становится объектом большой политики.

Вопрос развития биотопливной индустрии становится все более актуальным. Предлагается следующая классификация сырья для производства биотоплива:

1) по источникам происхождения: биотопливо из продуктов и отходов лесопромышленного комплекса, биотопливо из продуктов и отходов агропромышленного комплекса и биотопливо из биологических муниципальных отходов;

2) по физическим свойствам вещества: твердое биотопливо, жидкое биотопливо и газообразное биотопливо.

К твердым источникам биотоплива относятся:

– твердые продукты лесопромышленного комплекса (ЛПК): лес, отходы деревообработки, твердые продукты агропромышленного комплекса (АПК): солома, стебли, жмых, лузга, биологическая часть твердых бытовых отходов (ТБО).

К жидкому биотопливному сырью относятся:

• жидкие продукты ЛПК: черный щелок, метанол, пиролизное масло;

• жидкие продукты АПК: сырые растительные масла, масляный эфир (биодизель), метанол, пиролизное масло из твердого агротоплива;

• жидкая часть биологических муниципальных отходов (иловые осадки сточных вод, пиролизное масло из твердых бытовых отходов).

Важное место среди различных видов жидкого биотоплива занимает моторное биотопливо для транспорта.

Из вышеперечисленных видов биотоплив с биотехнологией сопрягается только производства: этанола, бутанола, частично биоводорода, биогаза, свалочного газа и растительных масел.

Биоэнергетика за прошедшие 20 лет превратилась в мощный самостоятельный сектор мировой энергетики. По масштабам производства и применения в некоторых развитых странах превосходит использование всех других видов возобновляемой и альтернативной энергетики.

С точки зрения динамики и объемов потребления основными сегментами мирового рынка альтернативной энергетики являются биотопливо, солнечная и ветряная энергетика

Вклад биоэнергетики в энергобаланс таких стран, как США, ЕС, БРИК (кроме России), растет постоянно.

Около 90 % производственных мощностей биотоплива приходится на США, Бразилию и ЕС.

К 2030 г. в зависимости от региона биотопливо может занять от 10 до 30 % совокупного потребления энергии.

В ЕС производство тепловой и электроэнергии из биомассы к 2020 году возрастёт на 850 ТВт-ч (1012 Вт. ч) по сравнению с 2007 годом до 1 650 ТВт-ч. Данный рост составит около половины всего текущего потребления энергии из угля.

Мировым лидером по использованию твердой биомассы для получения тепла и электроэнергии являются США. В 2007 году в США 42 ТВт-ч электроэнергии производилось из твердой биомассы. На втором месте – Япония (16 ТВт-ч), на третьем – Германия (10 ТВт-ч).

По состоянию на конец 2009 года в США насчитывалось около 80 проектов по использованию твердой биомассы для производства электроэнергии общей установленной мощностью 8,5 ГВт.

К 2010 году в ЕС насчитывалось около 800 электростанций на твердой биомассе (дереве, чёрном щёлоке и т. п.) общей мощностью около 7 ГВт, большинство из которых расположено в богатых лесными ресурсами странах Скандинавии, а также в Германии и Австрии.

Около 4 % электроэнергии в ЕС производится из древесных отходов. В 2010 году спрос на пеллеты в ЕС составил 11 млн. тонн, около 15 % из которых было импортировано из США и Канады. В период с 2008 по 2010 гг. США увеличило экспорт пеллет в ЕС более чем в два раза. В конце 2006 года спрос на пеллеты в США составил 1,4 млн. тонн – около 2 % всей произведенной в США электроэнергии (рост более чем в два раза по сравнению с 2002 годом). Основными потребителям пеллет в США является частный сектор и малые тепло– и электростанции.

Общее производство жидкого биотоплива в мире возросло с 16 млрд. л в 2000 году до 100 млрд. л в 2010 году. Жидкое биотопливо составляют около 3 % всего топлива для транспорта, а также достигает существенной доли в некоторых странах, наиболее активно развивающих данный сектор. В Бразилии в 2008 году доля использования биотоплива в транспортной сфере составила около 21 %, в США – 4 %, в ЕС – 3 %.

По оценкам МЭА к 2050 году доля биотоплива транспортной сфере может увеличиться до 750 млн. т. н. э. (по сравнению с текущим уровнем в 55 млн. т. н. э.) и составить 27 % всего транспортного топлива, позволяя уменьшить объемы выбросов транспорта на 20 % и сократить мировую зависимость от ископаемых видов топлива. (тн. э. – тонн нефтяного эквивалента)

Международное энергетическое агентство (МЭА) оценивает мировое замещение этанолом более 1 млн. баррелей нефтяного спроса в день.

Из всего производимого в мире этанола 80 % имеет топливное применение, 12 % – техническое и 8 % – пищевое.

В 2009 году производство этанола в мире составило 76 млрд. литров (рост на 10 % по сравнению с 2008 г., на 400 % по сравнению с 2000 г.). В 2009 г. ведущие места по производству этанола заняли США, Бразилия и ЕС. При этом на долю США (40,1 млрд. литров -54 %) и Бразилии (24,9 млрд. литров – 34 %) пришлось около 88 % мирового производства этанола.

Второе место из моторных биотоплив занимает биодизель, получаемый из растительных масел и метанола.

ЕС остается основным (около 50 %) производителем биодизеля в мире.

В США масштабы производства биодизеля на фоне этанольного бума выглядят намного скромнее, но прорабатываются программы по наращиванию объемов производства американского биодизеля.

Производство биодизеля в США в 2009 году составило 2.2 млн. м3 и осуществлялось в основном из растительных масел.

Важное место в программах развития биотоплив за рубежом занимает производство биогаза.

Лидером по производству биогаза является ЕС. В настоящее время европейский рынок биогазовых установок оценивается в 2 млрд. долларов США, по прогнозам он должен вырасти до 25 млрд. к 2020 году. В Европе 75 % биогаза производится из отходов сельского хозяйства, 17 % – из органических отходов частных домохозяйств и предприятий, еще 8 % – из отходов сточных вод (установки в канализационноочистных сооружениях).

Первое место по количеству действующих биогазовых заводов принадлежит Германии – в 2010 году их насчитывается более 9 000. Только 7 % производимого данными предприятиями биогаза поступает в газопроводы, остальное – используется для собственных нужд производителя. В 2007 г. объем электроэнергии, производимой с помощью биогаза, составил около 2,9 ТВт-ч. В перспективе 10–20 % используемого в стране природного газа может быть заменено биогазом.

В 2000 году мировой рынок биотоплив оценивался в сумме 866 миллионов $ США. И к 2013 году – 2.14 млрд. $ США.

Прогнозируется, что в следующем десятилетии около 18 млрд. $ будет инвестировано в:

1. Крупномасштабное производство электрической и тепловой энергии из биомассы – 13.9 млрд. $ или 78 %;

2. Производство биогаза 1.3 млрд. $ (7 %) (создание крупных централизованных заводов мощностью не менее 10 тысяч тонн перерабатываемого сырья и производству не менее 0.15 МВт тепловой, электрической энергии и топлива для двигателей).

3. Производство «лендфилл-газа» (свалочного газа из ТБО) – 2.7 млрд. $ или 15 % для получения тепловой и электрической энергии.

Итого, на производство биогаза – 4 млрд. $ США или 22 %.

Синтез-газ (син-газ), смесь газов, главными компонентами которой являются монооксид углерода СО и водород Н», которую можно получать в процессе термической обработки биомассы с использованием различных технологий. В настоящее время известно о нескольких инициативах по реализации проектов в области производства синтез-газа в некоторых странах, например в США, Европе, Японии, Австралии и Индии.

Важным дополнением к солнечной энергии и к одному из ее производных – биоэнергетике в недалеком будущем могут стать МЕТАНГИДРАТЫ, обилие которых найдено в океане. [1-42]. Метангидрат сосредоточен на глубинах от 500 до 2000 метров у берегов некоторых континентов, как правило, на крутых подводных склонах. Есть они в Арктике.


Рис. 1–2. Кусок метангидрата выглядит как грязноватый лёд


Рис. 1–3. Строение конгломерата – „ящичной“ псевдомолекулы, состоящей из кристаллической решётки льда и молекулы метана, находящейся в полости этой решётки


Метановый лед относится к так называемым „ящичным“ соединениям. В них не возникает химических связей между молекулами метана и молекулами воды. Метан размещается в пустотах кристаллической решётки водяного льда. Единичный конгломерат из воды и газа составляют 32 молекулы воды и 8 молекул метана. В одном кубическом метре этого вещества содержится значительно больше энергии, чем в кубометре природного газа (при одинаковом давлении). В ледовых пустотах одного кубометра метангидрата „запрятано“ 164 кубометра газа. Молекулы льда, а значит, и метана уложены здесь более плотно. [1-42].

Метангидрат образуется под давлением на глубине в порах донных осадков из органических веществ иловых осаждений, где они подвергаются анаэробному бактериальному разложению с образованием метана.[1-42]. По приблизительным оценкам, на планете хранится от 10 000 до 15 000 гигатонн углерода в виде метангидрата (гига равна 1 миллиарду).

Огромная масса запрятанного на глубине метана перекрывает по запасам все известные на Земле природные источники энергии. Вопрос только в том, как воспользоваться этим богатством?

Сегодня ещё нет отлаженной промышленной технологии добычи нового топлива.[1-42]. Соединённые Штаты, согласно перспективным расчётам, к 2020 году должны на 30 процентов увеличить потребление энергии. Готовы они использовать и метангидрат: конгресс страны отпустил 42 миллиона долларов на разработку программы включения нового топлива в энергетический баланс страны

Намечено, что к 2015 году начнётся эксплуатация прибрежных хранилищ Метангидрат.[1-42]. Особенно заинтересована в освоении добычи метангидрата Япония. Эта страна стремится освоить коммерческую, промышленную добычу. [1-42]. Бурение в Сибири и на Аляске показало концентрацию газа в порах льда от 50 до 80 процентов. Морские залежи крупнее, но там заполняемость газом равна примерно 20 процентам.


1. Метангидрат 10000

2. Уголь, нефть, газ 3500

3. Растительный мир 1400

4. Вода 980

5. Животный мир 830

6. Торф 500

7. Прочие63

Рис. 1–4. Содержание органического углерода (в миллиардах тонн) в запасах метангидрата и в традиционных резервах топлива


В России, в Сибири, есть месторождение Мессоякское – газовое поле, расположенное в вечной мерзлоте, – единственное место в мире, где обычный природный газ получают из метангидрата. Это довольно мощное месторождение, работающее уже много лет. От него проложен трубопровод до Норильска – крупного потребителя энергии. [1-42]. В отличие от вечной мерзлоты океанские запасы, как уже говорилось, состоят из двух частей: метанового льда, слой которого может превышать несколько сотен метров, и удерживаемого этим слоем газового пузыря.[1-42].

1.2. Биотопливо третьего поколения

Важным направлением в современной мировой биоэнергетике является широкомасштабное культивирование пресноводных и морских микроводорослей как продуцентов углеводородов, так и для производства дешевой биомассы.

Выращивание зеленых водорослей в современных модернизированных системах биореакторов имеют существенные практические и экономические преимущества для производства биотоплива по сравнению с традиционными культурными растениями [1-43].

Фотосинтез играет абсолютно центральную роль во всех биотопливных производственных процессах, так как это первый шаг в преобразовании солнечной энергии (света) в химическую энергию и, следовательно, в конечном счете, отвечает за управление производством их запасов необходимых для синтеза топлива: протоны и электроны (для био-Н2), сахаров и крахмала (на биоэтаноле), масла (для биодизеля) и биомассы (для BTL и биометан). Следовательно, любое увеличение продуктивности фотосинтеза будет способствовать повышению конкурентоспособности производства биотоплива в целом.

Экономическая эффективность производства биотоплив при конверсии солнечной энергии посредством фотосинтеза определяется эффективностью фотосинтеза. Наибольшей эффективностью фотосинтеза обладает сахарный тростник, использующийся для получния биоэтанола в Бразилии, и кукуруза, использующаяся в США для производства биоэтанола. Эти технологии могут быть экономически выгодными при стоимости нефти выше 40 долларов США за баррель, тогда как стоимость барреля биодизельного топлива составляет 80 долларов США. Таким образом, даже при незначительном повышении фотосинтетической эффективности ожидается значительное увеличение экономической конкурентоспособности производства биотоплив. В этом плане водорослb имеют различные преимущества по сравнению с классическими сельскохозяйственными культурами для производства биотоплива и могут быть сканированы для выделения видов с высокой фотосинтетической эффективностью.

Культивирование водорослей, не требующее использования пахотных земель и лесной древесины, открывает новые экономические возможности для производства биотоплив в засушливых регионах.

В отличие от обычных сельскохозяйственных культур, которые дают один или два урожая в год, микроводоросли имеют короткий жизненный цикл (~ 1-10 дней), что позволяет с одной и той же площади снимать несколько урожаев и даже создать непрерывный процесс.

Производство водорослей позволит значительно снизить использование воды по сравнению с культивированием обычных сельскохозяйственных культур.

В плане водоиспользования большой интерес представляют высокоурожайные морские микроводоросли, использующие морскую соленую воду и с их помощью получать водород и кислород из морской воды и использовать водород для топливных элементов с получением электроэнергии.

Биомасса водорослей может быть использована для биогазификации с получением метана (в начале 80-х годов лаборатория ВИЭ МГУ им. М.В. Ломоносова и Институтом биохимии им. А.Н. Баха АН СССР была разработана такая технология) и диоксида углерода, которые могут быть использованы для каталитического производства жидких углеводородов (биобензина, биокеросина и биодизельного топлива).

Широкие перспективы для создания высокоэффективных водорослей открывает современная генетика.[1-44].

НУЖНА ЛИ ПРОМЫШЛЕННАЯ БИОЭНЕРГЕТИКА РОССИИ, ЗАНИМАЮЩЕЙ ВЕДУЩЕЕ МЕСТО В МИРЕ ПО ЗАПАСАМ И ДОБЫЧЕ ИСКОПАЕМЫХ УГЛЕВОДОРОДОВ?

В 2010 г. в России насчитывалось 33,8 млн. легковых автомобилей. Ежегодный прирост составляет 1.4 млн. шт. К 2030 г. прирост может составить 25.2 млн. шт., т. е. всего 59 млн. шт.; на 1000 чел. – 421 шт., что в 2 раза меньше, чем в США.[6]. Оптимистичный вариант совпадает с оценкой российских экспертов: 425 шт./1000 жителей [1–7].

По меркам США относительно общей численности населения в России должно быть 115.9 млн шт. легковых автомобилей.

Нижеприведенный список отражает уровень автомобилизации населения ряда стран мира, то есть показывает количество индивидуальных автомобилей в стране, приходящихся на 1000 человек. [1–8]. США – 829; 2. Испания – 608; 3. Финляндия – 591; 4. Франция – 575; 5. Литва – 541; 6. Германия – 534; 7. Великобритания – 525; РОССИЯ -249.

Средний пробег российского автомобиля – 16 700 км в год [1–9]. Средний годовой расход топлива на автомобиль 1670 л или 1252.5 к г.

В 2030 г расход топлива на прогнозируемое количество авто составит 145 млн. т или нефти понадобиться более 500 млн. т/год при 70 % выходе моторных топлив(бензина, керосина и ДТ) при крекинге нефти.

Натуральный объем продаж дизельного топлива в России в 20062010 гг вырос на 4,2 млн т, достигнув 31,6 млн т [1-10,]. Производство дизельного топлива в России в 2012 г. составило 79 млн. т. [1-11].

Прогноз максимального потребления общей суммы моторных топлив в 2017 г оценивается в 102.7 млн. т [1-12].

Добыча нефти в России по оценке Минэнерго в России в 2012 году достигнет рекордных 516–518 млн. тонн.[1-13].

Прогноз добычи нефти в России до 2030 года по макрорегионам, 600,0 млн. тонн [1-14].

Производство авиационного керосина в России составляет около 9 млн. тонн в год [1-15].

США останутся крупнейшим рынком для гражданской авиации (710 млн пассажиров на местных рейсах и 223 млн. – на международных). [1-17].

По итогам 2011 года количество пассажиров, воспользовавшихся услугами авиатранспортной системы РФ, составило около 110 млн.[1-18]. В США летает в 3 раза больше, чем все население, т. е. в Росси к 2030 г. может летать 420 млн. человек и расход керосина составит 25.7 млн. т/год (без учета ВВС) при протяжённости полета одного авиапассажира на внутренних авиалиниях 3200 км.[1-19]. Эффективность использования энергии является своего рода индикатором научнотехнического и экономического потенциала общества, позволяющим оценивать уровень его развития. Сопоставление показателей энергоэффективности экономики России с развитыми странами показывает, что удельная энергоёмкость нашего валового внутреннего продукта (ВВП) в несколько раз выше, чем в развитых странах. Уровень потребления электроэнергии в расчете на единицу сопоставимого ВВП в России выше, чем в США, в 2,5 раза, Германии и Японии в 3,6 раза. Это свидетельствует о значительных резервах экономии энергоресурсов в России, масштабы которых можно оценить ориентировочно в 40–50 % от уровня потребляемых топлива и электроэнергии. Энергоемкость ВВП превышает уровень, достигнутый в развитых странах Запада, в 3,5 раза, но это превышение неравномерно по отраслям. В сравнении с северными странами энергоемкость в российских добывающих отраслях, лесной, целлюлозно-бумажной, пищевой промышленности почти такая же, в обрабатывающих отраслях превышение до 2 раз, в производстве стройматериалов до 3–4 раз, в теплоснабжении и теплопотреблении в пересчете на 1 м2 отапливаемой площади в 4 раза. С учетом объемов теплопотребления станoвится ясно, что теплоснабжение определяет энергорасточительность экономики страны.

По данным Министерства энергетики, можно оценить затраты топлива на теплоснабжение в 450–470 млн т у.т./год (3 т у.т. на чел./год). Это половина потребления топлива в стране, т. е. столько же, сколько тратится на все остальные отрасли промышленности, транспорт и т. д. вместе взятые. Потребление топлива теплоснабжением равняется всему [1-20]. Снижение всего на 20 % потребления только газа, составляющего в топливном балансе почти 60 %, позволит сократить затраты на топливо на 1 млрд долл. США и увеличить экспортный потенциал страны на 5 млрд долл. США ежегодно. Причем увеличение топливному экспорту страны. т. е., 320 млн. т/год жидких углеводородов. экспортного потенциала не потребует разработки новых месторождений и реконструкции газопроводов от мест добычи в центр страны (2–3 тыс. км).

Удельные затраты на теплоснабжение сильно различаются по стране и составляют от 1 до 15 долл. США на 1 м2/год. Население платит около 6 млрд долл. США в год, т. е. 40 долл. США чел./год или 5 % от своих суммарных доходов.

Объем выработки тепловой энергии в России по сравнению с 1970 г. увеличился в 1,56 раза (с 1345 млн. Гкал/год до 2100 млн. Гкал/год), а количество потребленного топлива в 1,5 раза – с 280 до 420 млн. т у.т. (без учета расхода топлива на потребляемую электроэнергию), т. е. уровень энергоэффективности источников тепла практически не изменился несмотря на двукратное увеличение удельного потребления газа, значительное уменьшение доли печного и т. п. отопления.

Удельный расход топлива на выработку тепла в среднем по стране составляет 200 кг у.т./Гкал. Вполне реально уменьшение удельного расхода до 150 кг у.т./Гкал, что эквивалентно уменьшению потребления топлива на 25 % т. е. на 105 млн. т у.т., за счет повышения КПД котлов и увеличения доли комбинированной выработки тепла и электроэнергии.

Суммарные тепловые потери в сетях составляют около 450 млн. Гкал/год. (450 млн. х млн. ккал/год) или 47.4 млн. т/год топочного мазута (ТМ) марки М100. Потенциал экономии за счет прогрессивных способов теплоизоляции, оперативного устранения утечек, уменьшения диаметров трубопроводов, частичной децентрализации теплоснабжения концевых потребителей составляет около 300 млн. Гкал/год. Или 31.6 млн. т ТМ.

Объем теплопотребления по стране составляет около 1650 млн. Гкал/год. = 173.8 млн. т ТМ. Половина тепла расходуется на теплоснабжение жилых зданий, в том числе на отопление около 600 млн. Гкал.= 63.2 млн. т ТМ. При общей площади жилого фонда 2,8 млрд. м2 [3] удельный расход тепла на отопление составляет 0,22 Гкал/м2 год [121]. В 2013 году – производство тепловой энергии в России составило 618,4 млн. Гкал (65.1 млн. т ТМ) – прогноз ФСТ[1-22]. Потребление электроэнергии в 2013 году в России прогнозировалось на уровне 1064,6 млрд. кВт ч, что на 4,1 % больше показателя 2011 года и на 2,1 % превышает ожидаемое потребление в 2012 году.

Объемы потребления электроэнергии населением прогнозировалось на уровне 146,4 млрд. кВт ч, что на 1 % больше плана 2012 года.[1-23].

Предполагается, что доминирующим энергоносителем первой половины ХХI века будет природный газ. Его использование в качестве основного топлива обеспечит высокую энергетическую и экономическую эффективность производства.


Рис. 1–5. Структура производства электроэнергии в России. [1-24].


Удельный расход топлива на выработку тепла в среднем по стране к 2030 г. может составить 150 кг у.т.

В 2030 г. Россия должна будет затратить на теплоснабжение населения по меркам Москвы 97.7 млн. т у.т. или 97700 млн. кг у.т., что эквивалентно 71989.5 млн. кг топочного мазута, что потребует переработать 145.7 млн. т нефти. Для замены этого количества топочного мазута потребуется в год 600 млн. м3 дров стоимостью 600 млрд. руб.[1-25].

Потребление электроэнергии на жителя г. Москвы составляет 1400 кВт час/год, для России – 1100 кВт час/год, для США -3500 кВт час /год.[1-27]. К 2030 г. Для всех жителей России потребление электроэнергии может составить по меркам г. Москвы – 200480 млн. кВт час/год или 200.5 млрд. кВт час/год, по меркам США – 500 млрд. кВт час/год или 47 % от производства электроэнергии в 2012 г.[1-28].


Рис. 1–6. Зоны централизованного и распределенного теплоснабжения РФ.[1-26]


Структура производства электроэнергии на электростанциях России в 2000 году: ТЭС – 67 %; 582,4 ГВт. ч;; АЭС – 15 %; 128,9 ГВт. ч. ГЭС – 19 %; 164,4 ГВт.ч

К 2020 г. прогнозируетя производить 1620 млрд. кВт час /год электроэнергии, на ТЭС придется до 1069 млрд. кВт час/год. На ТЭС придется 66 %, АЭС – 20.7 %, ГЭС – 13.3 %.

Объем производства электроэнергии на ТЭС европейской части страны – 80 % от суммы всех ТЭС России. В 2001 г. ТЭС европейского региона потребили 150 млрд. куб. м природного газа или 95 % от общего объема потребления всей страны.[1-29]. Для производства электроэнергии в 2020 г. потребуется 185–190 млрд. куб. м газа в год. 95 % придется на европейскую часть страны.

186 млрд. м3 газа дадут 610 млрд. кВт ч/год электроэнергии или 57 %, на уголь и мазут – 43 % или 163.8 млн. ту.т., или 15.5 млн. т топочного мазута и 144.5 млн. ту.т. угля.

Соотношение затрат топлива на производство электроэнергии и тепловой энергии на ТЭС равно 2.9 на примере Абаканской ТЭЦ[1-30].

Когенерация – комбинированный процесс одновременного производства тепла и электроэнергии [1-31].

Когенераторная установка вырабатывает электроэнергию и тепловую энергию в соотношении 1:1,5.

Если к 2050 г. ВВП России на душу населения выйдет на современный уровень ВВР США, то российский ВВП должен будет составить 6.54 трлн. Долл. в год, а производство электроэнергии 1770 млрд. кВт ч/год, т. е. дельта по отношению к выработке электроэнергии в 2010 г. составит 770 млрд. кВт ч/год.


Таблица. 1-7

Внутренний валовый продукт и производство электроэнергии в США и России


По постановлению Правительства РФ (январь 2009 г.) к 2020 г. производство электроэнергии должно вырасти до 1700 млрд. кВт ч/год. Вклад ВИЭ должен составить 4.5 %.

Если взять производство электроэнергии по данным США – 1770 млрд. кВт ч/год, то вклад ВИЭ должен составить 79.7 млрд. кВт ч/год.

По данным 2009 г. производство электроэнергии из отходов АПК (отходы КРС, Свиноводства– крупных хозяйств и птицефабрик) может составить 82.43 млрд. кВт ч/год, то есть перекрывает прогноз Энергетической стратегии России к 2020 г по получению электроэнергии из ВИЭ.

Производство биоэтанол в США – это военно-стратегическая и политическая цель США.

Широкое развитие масштабного производства автобиоэтанола из кукурузы в США имеет военно-стратегическое значение на случай возникновения непредвиденных обстоятельств: войны, терактов, крупных природных катаклизмов, и т. д. 207 спиртовых заводов с общей производительностью 48.3 млн. т/год этаола. Производство бензина 1.17 млрд. т/год. Газохол – 3.7 %.

Евросоюз и США всерьез взяли курс на развитие альтернативных источников энергии. ЕС объявил о необходимости увеличения финансирования 10-летней программы развития альтернативной энергетики на 50 млрд. евро. Ожидается, что к 2020 году в развитых странах 20 % всей потребляемой энергии будет вырабатываться без сжигания нефти и газа. Все это нанесет мощный удар по России, которая пока по-прежнему делает ставку на экспорт углеводородов.

На сегодняшний день биотопливо является самым распространенным видом альтернативной энергии в США. На его долю приходится примерно 53 % выработки альтернативной энергии. Далее следует гидроэнергетика – 36 %; на геотермальные источники и энергию ветра приходится по 5 %, на солнечную энергию всего 2 %.[1-32].


МИРОВОЙ ЭНЕРГЕТИЧЕСКИЙ РЫНОК (2007–2030 годы)

2007 год

Нефть – 36.5%

Газ – 23.5%

Уголь – 27.7%

АЭС – 5%

ВИЭ (с ГЭС) 6.3%

2030 год

Нефть – 23.5%

Газ – 20%

Уголь – 25%

АЭС – 10%

ВИЭ (с ГЭС) -21.5%

К 2030 г. Потребление ВИЭ с ГЭС в мировой энергетике возрастет с 6.3 % до 21.5 %, АЭС с 5 % до 10 %, а потребление ископаемых энергоносителей снизится: нефти на 13 %. Газа– на 3.5 %, угля – на 2.7 %.

Расход тепловой энергии в России на обогрев зданий в 4–5 раз выше, чем в Финляндии и Норвегии (наиболее близкие по климатическим условиям).

КРЕКИНГ НЕФТИ:

Бензин – 20%

Керосин – 9.5%

ДТ – 19%

Мазут топочный 49.4 % [1-33].

«… "сырьевая игла", на которой уже давно "сидит" российская экономика, немного проржавела», Россия «достигла пределов развития и в ближайшие годы нефтяная промышленность начнет идти вниз. При этом компании будут тратить колоссальные деньги даже на то, чтобы хоть как-то поддержать ее на прежнем уровне.

По их оценке в 2013 г., падение будет находиться в пределах статистической погрешности – "процент-два". Затем в течение 3–5 лет динамика добычи нефти в России будет находиться на некоем плато.

После этого возможно ускорение темпов падения добычи "черного золота" в России – до 5–7% в год. Даже несмотря на колоссальные затраты [1-34,1-35].


Таблица.1-8

Прогнозные данные по добычи необходимого количества нефти для производства основных моторных топлив (бензин, керосин, дизельное топливо) в 2030 г. для России


МТ – моторные топлива


Ранее указывалось, что дефицит может составить 300 млн. тонн нефти в год. При переходе на современные технологии крекинга он может уменьшится до 180 млн. тонн нефти в год.

Кроме возможного дефицита добычи нефти на изменение сырьевой структуры моторных топлив в России могут оказать значительное влияние стоимости добычи нефти.

Но значения этих величин в зависимости от стран добычи нефти по разным источника отличаются.

По данным одного из российских экспертов – А. Хайтуна в 2009 г. себестоимость добычи нефти на Ближнем Востоке и в Ливии составляет 2–6 $ за баррель при глубине залегания до 2 км. Нефть расположена вблизи океанских портов, что резко сокращает транспортные издержки.

В России себестоимость добычи нефти оценивается в 6-14 $ за баррель без полного учета затрат на создание и поддержание инфраструктуры, при крайне низкой заработной плате… Себестоимость нефти с новых месторождений ввиду увеличения глубины залегания пластов достигнет 22–24 $, даже если не полностью учитывать удорожание инфраструктуры.

Стоимость транспортировки российской нефти в несколько раз выше транспортировки ближневосточной: средняя дальность доставки по нефтепроводам превышает 3000 км (Ливия – 600 км, Норвегия -1000 км); часть поставок производится на морских судах и железнодорожном транспорте, тогда как основную массу мировых поставок нефти из Ближнего Востока осуществляют океанские суда (в десятки раз дешевле железнодорожного транспорта). [36]. В настоящее время Россия обеспечивает 26 % потребления и 66 % импорта природного газа в страны ЕЭС. Среднее транспортное плечо для газа по России – 2200 км, а при экспорте (если учесть страны СНГ) – порядка 3700 км. Себестоимость российского газа на скважине 4 долл. США за 1000 кубометров.

Это последний относительно «дешевый» газ: себестоимость газа со Штокмановского месторождения по расчетам поднимется до 5,7–6,0 долл. США за 1000 м. Средняя цена транспортировки из России может вырасти вдвое. Экспорт газа из Западной Сибири, уже сейчас идет до середины Франции. Далее, к западу континента, экспорт российского газа нерентабелен. [1-36].

Сильным конкурентом выступают новые газовые месторождения Прикаспия, Ливии и Алжира, а также Центральной Африки, транспортные плечи которых существенно короче, а условия добычи, как минимум, не хуже. Вместе с тем, имеется уверенность в масштабном экспорте на Европейский рынок больших количеств российского природного газа.

Итак, значительная часть разведанных ресурсов России, а тем более перспективных, неконкурентны на мировом и, особенно, европейском рынках. [1-36].

Другой эксперт Евгения Корытина в статье «Нефть за 3 доллара», опубликованной в 2011 г.[1-37] писала, что «… легкая нефть, дешевая рабочая сила и электроэнергия позволяют российским компаниям сохранять низкий уровень себестоимости добычи по сравнению с иностранными конкурентами. Так, «Роснефть» на баррель нефти тратит

2,6 долл., в то время как ExxonMobil «бочка» обходится в пять раз дороже – 10,3 долл. Самые низкие затраты на баррель добычи в 2009 году продемонстрировала «Роснефть» – 2,6 долл., самые высокие издержки были у «Башнефти» – 7,3 долл. за баррель.

Себестоимость добычи у российских компаний самая низкая в мировой нефтяной отрасли (табл. 1–9).


Таблица. 1-9

Стоимость добычи нефти в 2009 году (долл. за баррель) [1-37]


Однако, по другим источникам стоимость добычи барреля нефти в Саудовской Аравии в 2008 г. составляла 2 долл. США [1-38], тогда, как в российской нефтяной компании Роснефть себестоимость добычи одного барреля нефти составляла в среднем 14,57 долларов. [139]. В 2002 г. по данным Эрвин Скорецкого [1-40] соотношение стоимости добычи нефти по странам было следующим: США (суша) 14–27, США (шельф) 10 – 18, Норвегия 12 – 17, Мексика 7 – 12, Южн. Америка 7 – 10, Аляска 5 – 7, Кувейт 1 – 2, Ирак 0.5 – 0.7, Сауд. Аравия 0.4 – 1, Россия 5 – 10.

По мнению А. Хайтуна российский сырьевой рынок ждут трудные времена. [1-36]. «Значимость экспорта нефти и особенно газа для экономики страны не подлежит сомнению». В политическом аспекте экспорт природного газа и нефти – главный инструмент, позволяющий стране участвовать в определении стратегии развития современной Европы. Сегодня перспектива развития нефтяной отрасли на период до 2015 года в России базируется на старых освоенных районах, где доля трудно извлекаемых запасов составляет уже около 60 %. Возобновление ископаемых углеводородных энергоресурсов в нашей стране в XXI веке может происходить только за счет освоения минерально-сырьевых ресурсов Сибири, Дальнего Востока, шельфов арктических морей. Это очень дорогостоящие проекты, требующие не одного десятка миллиардов долларов. Естественными условиями долгосрочных капиталовложений становятся гарантии окупаемости вложений и обеспечения приемлемой рентабельности проектов.».[1-36].

Россия в исторической перспективе диктовать на Европейском рынке энергоресурсов не может. Условия добычи и стоимость транспорта нефти на рынки Европы из Саудовской Аравии и из Тюмени, а в дальнейшем – арктических шельфов, также не в нашу пользу. Неконкурентоспособность продукции северных регионов уже давно предопределена недальновидной стратегией развития Севера России. Были созданы ненужные в столь суровых районах города, размещена избыточная промышленность.[1-36].

Россия неконкурентоспособна на мировом и европейском рынках энергоресурсов по определению, в силу своих географических и природно-климатических условий.

Однако именно в этих районах находится 60–95 % важнейших ресурсов России: энергоносителей, редких металлов, золота, леса. Особенно неблагоприятны условия добычи энергоносителей, которые не относятся к продукции с высокой удельной стоимостью, как, например, золото. Кроме того, внутриматериковое расположение месторождений энергоресурсов, отдаленное на тысячи километров от районов потребления, обусловливает неизбежность транспортировки нефти и газа почти целиком по суше (трубопроводами). [1-36].

Экспортные нефтепроводные мощности увеличатся со 125 млн тонн в 2000 году до 400 млн тонн в 2020-м, экспортные газопроводные – со 185 до 382 млрд. кубометров. Все эти трубы, чтобы окупить их строительство, надо будет чем-то заполнять. Чем?

Ответ дан в докладе об Энергетической стратегии страны до 2030 года, подготовленной Министерством энергетики. Предполагается, что добыча газа в России едва ли не удвоится, достигнув 1 трлн кубометров в год при экспортных поставках в 350–370 млрд кубометров. Добыча нефти в благословенном 2030-м должна превысить 530 млн т, а экспорт – 330 млн тонн.[1-41].

Ведь эти рекордные объемы углеводородов надо, во-первых, добыть и, во-вторых, продать.

Три четверти всех разведанных запасов газа сосредоточены в 21 крупном месторождении. Большинство из них уже вовлечены в разработку не менее 15 лет. Четыре крупнейших (Уренгойское, Ямбургское, Медвежье и Вынгапурское) дают до 80 % всей добычи. И уже вступили в фазу падения добычи. Для резкого роста ныне сторнирующей газодобычи нужны вовлечение в оборот глубинных газосодержащих слоев на этих месторождениях (так называемых ачимовских пластов) и ввод в строй новых месторождений. Последние есть только на Ямале и на шельфе северных морей (например, Штокмановское). Потребуются колоссальные силы и средства на их освоение. [1-41].

Кроме того, не назовешь безоблачной и перспективу продаж газа на экспорт. По данным International Energy Agency, роль российских поставок на рынок ЕС неуклонно снижается. Давление со стороны сланцевого газа может привести к снижению физических поставок, как это уже было в 2009 году. [1-41].

Но не все так мрачно. Выход есть!

Необходимо интенсивно развивать более глубокую переработку нефти и природного газа, развивать нефтехимию и газохимию, активно развивать новые технологии переработки древесины и другой биомассы (водорослей) в разнообразные углеводородные продукты.

Генеральный директор ОАО «ВНИПИНЕФТЬ» Владимир Капустин пишет, что «… наука в сфере переработки и нефтехимии ещё сохранилась в нашей стране, да и уровень не хуже, а то и выше мирового. Например, Институт нефтехимического синтеза им. А.В. Топчиева РАН, возглавляемый академиком Саламбеком Хаджиевым, Институт катализа им. Г.К. Борескова СО РАН, возглавляемый академиком Валентином Пармоном, выполняют современнейшие высокотехнологичные разработки в области нефтехимии и нефтепереработки. Однако то, что сегодня есть у них, – это на уровне пилотных полупромышленных установок. В промышленность же их не пускают по разным причинам – из меркантильности, из желания купить западные технологии». [1-41].

Таким образом, в ближайшие десятилетия могут возникнуть две важнейших причины, которые могу оказать существенное влияние на изменение сырьевой структуры для производства моторных топлив, электроэнергии и тепловой энергии в России: 1) дефицит добычи нефти и 2) повышение ее стоимости.

И поскольку основным потребителем российского рынка углеводородов будут моторные топлива, то замену нефтепродуктов-моторных топлив надо искать среди возобновляемых источников энергии. И первым претендентом на это место является биоэнергетика: биоэтанол, биобутанол, биометан-биогаз, биоводород, син-газ, биобензин, биокеросин и биодизель.

Потенциальные объемы производства биотоплив из биомассы в России в ближайшие десятилетия могут составить более 800 млн. ту.т./год, и не будут уступать объемам ежегодной добычи нефти, угля или природного газа, (без учета биотехнологического восстановления дебита нефти на старых промыслах) (Годовой энергобаланс России – более 1600 млн. ту.т.).

Шесть китов» современной сырьевой базы для потенциального производства биотоплив в России:

1. ОРГАНИЧЕСКИЕ ОТХОДЫ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА.(80 млн. т у.т./год к 2020 г. – 154 млн. ту.т.),

2. ОТХОДЫ ЛЕСОПРОМЫШЛЕННОГО КОМПЛЕКСА И ДЕРЕВООБРАБОТКИ. (20 млрд. ту.т. – всего; ежегодно можно производить до 820 млн. ту.т. – интенсивная технология),

3. ТОРФ (Всего -60 млрд. ту.т. 10.7 млрд. ту.т. промышленный фонд, 100 млн. ту.т./год),

4. ЭНЕРГЕТИЧЕСКИЕ ПЛАНТАЦИИ (минимум 270.9 млн. ту.т./год, 19.5 млн. га – 20 %, биогаз – 228.5 млн. ту.т., этанол – 41.9 млн. ту.т.),

5. БИОГАЗИФИКАЦИЯ ОСТАТОЧНОЙ НЕФТИ (21.5 млрд. тонн извлекаемой нефти с 1965 г.– 43 года),

6. ДОБЫЧА МЕТАНГИДРАТОВ (общие запасы – 10 трлн. тонн или 1 блрд. куб. м).

Более того, Россия в ближайшем будущем может поставлять 510 % мирового рынка биотоплив (т.з. западных экспертов). Потенциальные возможности России в плане широкомасштабного производства биотоплив огромны, но в настоящее время ее отставание от ведущих стран достаточно велико.

Важная роль в решении указанных проблем на современном этапе развития мировой экономики также отводится производству и использованию биотоплив.

Может ли фотосинтез на территории России обеспечить достаточный вклад биомассы в энергетику страны без ущерба природопользованию? МОЖЕТ!!!

По данным американских экспертов (конец 80-х годов ХХ столетия) для США вклад биомассы в энергетику страны не должен превышать 15 % от общего энергобаланса.

Если оценивать потенциальные возможности современной России по вкладу растительной биомассы в энергетику, то эта цифра составит 255 млн. ту.т., или 1 млрд. куб. м общей древесины в год. Отходы – 222 млн. ту.т.

То есть ежегодно нужно будет вырубать 1/80 лесного массива России, или на восстановление допускается 80 лет.

Совместно с потенциальными возможностями АПК (только отходы) общий объем биотоплива к 2020 г. может составить 376 млн. ту.т

Швеция_при площади лесов 226 тысяч кв. км ежегодно заготавливает 80 млн. куб. м стволовой древесины.

Если это соотношение экстраполировать на площадь лесов России, то ежегодная заготовка стволовой древесины может составлять 2.96 млрд. куб. м, или 1.48 млрд. тонн, что по энергосодержанию равно 740 млн. т у. т./год.

Энергосодержание отходов лесосеки и деревообработки может составить 670 млн. ту.т.

Итого: 824 млн. ту.т.(с АПК)


Таблица.1-10

Виды российских биотоплив, тип сырья, внутреннее потребление и экспорт


Сырьевые возможности российской биоэнергетики не уступают ископаемым углеводородам: нефти, газу и углю.

Это энергетическая и продовольственная безопасность России.

Совершенно очевидно, что проблемами российской биоэнергетики должно активно заниматься государство, разработав соответствующую государственную программу с правовым ее обеспечением.

1.3 История развития промышленной биоэнергетики в России

Известный русский микробиолог, член-корр. АН СССР С.И. Кузнецов и созданная им научная школа в 60-х – 70-х годах ХХ столетия экспериментально обосновали, что процессы деструкции органических веществ до метана имеют широкое распространение в осадочных отложениях в настоящее время и что промышленные месторождения природного газа – продукт биологических процессов, протекавших ранее. [45].

Промышленный эксперимент, проведенный С. И. Кузнецовым на нефтепромыслах Поволжья в 1956 г. по использованию биогазовых технологий для увеличения дебита оставшейся в залежах нефти объединил биологию и большую энергетику, и, фактически, был «предтечей» создания Отечественной (но возможно и мировой) биоэнергетики. Становление отечественной Промышленной Биоэнергетики в СССР было связано с крупномасштабным применением биогазовых технологий для решения ряда народнохозяйственных задач: эффективной переработки осадков сточных вод больших городов-миллионников, таких, как г. Москва, и промышленного производства кормового препарата витамина В-12 с целью повышения эффективности откорма и продуктивности отечественного животноводства и птицеводства.

Теория биологического происхождения природного газа и современные научные и технические достижения еще в 1964 г. позволили сделать вывод о возможности промышленной биоконверсии биомассы в метан в масштабах достаточно близких к современной добыче природного газа.

Метан, как ископаемый, так и образующийся в современной биосфере, является конечным продуктом сложной цепочки превращения продуктов фотосинтеза в анаэробных, без доступа воздуха, условиях.

То есть, «новейший» метан современной биосферы и, возможно, значительная часть разведанного ископаемого метана содержит в себе законсервированную энергию Солнца.


nCO2 + nН2О (энергия солнца) → (СН2О)n + nО2 фотосинтез

(СН2О)n + n Н2О (анаэробный биопроцесс) → nСН4 + nCO2


Важное место в решении этих задач современной биоэнергетики играют биогазовые технологии, одновременно решающие проблемы: экологии, энергетики, агрохимии и сельскохозяйственного производства, социальные.

Какой же вывод следует из всего вышесказанного?

От существующих технологий производства энергии необходимо постепенно переходить к технологиям, основанным на использовании ЭНЕРГИИ СОЛНЦА И ЕЕ ПРОИЗВОДНЫМ (ветер, биомасса, гидро– и т. д.), которые позволят сохранить круглогодичный баланс СО2 в атмосфере в соответствии с коротким циклом круговорота углерода и одновременно, минимизировать тепловое загрязнение атмосферы за счет производства тепловой энергии.[1-45].

БИОМАССА ЯВЛЯЕТСЯ ПОСТОЯННО ВОЗОБНОВЛЯЕМЫМ ИСТОЧНИКОМ ТОПЛИВА.


Академик А.И. Опарин.

1901–1968 г


Академик В.Н.Шапошников

1894 – 1980 г.


Академик Н.Д. Иерусалимский

1901 – 1967 г.


Академик Е.Н. Кондратьева

1925 – 1995 г.


Чл. – корр. АН СССР С.И Кузнецов

1900–1987 г.


Чл. – корр. АН СССР В.Н.Букин

1899 – 1979 г.


Рис. 1–7. Отечественные ученые и специалисты – основатели промышленной биоэнергетики СССР.


Академик АН СССР В.Н. Шапошников; член. – корр. АН СССР С.И. Кузнецов; Академик АН СССР А.И. Опарин; член-корр. АН СССР В.Н. Букин; Академик АН СССР Н.Д. Иерусалимский; академик АН СССР Е.Н. Кондратьева; инженер-технолог И.С. Логоткин; профессор В.Я. Быховский; доктор биологических наук Е.С. Панцхава.


Инженер-технолог Логоткин И.С

1902 – 1985 г.


Проф., д-р биол. наук Быховский В.Я

1935 – 2001 г.


Панцхава. Е.С.


Международный опыт по масштабной реализации биотехнологий в энергетике требует активного содействия государственных структур и разработки соответствующих государственных программ.

Государственная программа должна скоординировать и объединить усилия специалистов науки и КБ, а также машино-строительные предприятия и компании по широкому внедрению ВИЭ в регионах страны.

Потенциальные объемы производства биотоплив из биомассы в России в ближайшие десятилетия могут составить в год около 1500 млн. ту.т./год, и не будут уступать объемам ежегодной добычи нефти, угля или природного газа, годовой энергобаланс России – более 1600 млн. ту.т.

Россия обладает большим опытом промышленного производства биотоплив из биомассы. СССР было первой страной в мире, которая в конце 60-х годов прошлого столетия освоила широкомасштабное промышленное производство биотоплив (биобутанола, биоэтанола, биоацетона, биоводорода и биогаза) из биомассы (мелассы-отхода сахаро-производства из сахарной свеклы).[1-45].

В настоящее время ежегодный объем производимых органических отходов агропромышленного комплекса (АПК) и городов по всем регионам России в сумме составляет почти 700 млн. тонн (260 млн. т по сухому веществу):

350 млн. т (53 млн. т с.в.) – животноводство,

23 млн. т (5.75 млн. с.в.) – птицеводство,

220 млн. т (150 млн. т с.в.) – растениеводство,

30 млн. т (14 млн. т с.в.) – отходы перерабатывающей промышленности,

32,5 млн. т – деревообработка

56 млн. т (28 млн. т с.в.) – твердые бытовые отходы.

Из этого количество отходов можно ежегодно получать до 73 млрд. куб. м биогаза (57 млн. тут.), до 90 млн. тонн пеллет или 75 млн. т «сингаза», который можно конвертировать в 160 млрд. куб. м водорода, а также получить до 330 тысяч тонн этанола, или до 88 млн. куб. м водорода и до 165 тысяч тонн растворителей (бутанола и ацетона).[1-45].

Сельское население России, согласно последней переписи, составляет 39 миллионов человек. Для обеспечения этого количества сельского населения газообразным топливом (приготовление пищи, горячая вода, отопление 8 месяцев) потребуется в год до 14.2 млрд. куб. м.

Современное сельское хозяйство России потребляет в год 2 млн. т бензина и 4.8 млн. т дизельного топлива.

По многолетним исследованиям советских и российских специалистов 1 л бензина или д. т. может быть заменен 1 куб. м природного газа в сжатом состоянии. 1 куб. м пр. газа эквивалентен 2 куб. м биогаза.

Для нужд транспорта и с/х машин потребуется для замещения традиционного топлива до 17 млрд. куб. м биогаза, для всего АПК – 31.2 млрд. куб. м

Биоэнергетика – это энергетические технологии и оборудование для переработки биомассы. Биотехнологии заложены в основу энергетических технологий, из чего следует, что энергетические технологии первичны к биотехнологии. Используя только биологические технология невозможно решить задачи стоящие на сегодняшний день перед малой энергетикой – «Биоэнергетикой».

Развивающаяся российская «Биоэнергетика» по своей масштабности и значимости решает более широкий круг вопросов, лишь частично сопряженных с биотехнологией.

Как свидетельствует мировой опыт, биоэнергетика должна развиваться как самостоятельный сектор экономики в рамках «большой» российской энергетики и в рамках Государственной программы по развитию биоэнергетики (далее – Госпрограмма).

При выполнении задач Доктрины продовольственной безопасности произойдёт увеличение поголовья крупного рогатого скота, свиней и птицы, что приведет к резкому увеличению отходов до 1200 млн. тонн.

Биоэнергетика позволит так же решить задачи переработки отходов лесопромышленного, пищеперерабатывающего комплексов, стоков ЖКХ.

Перед страной поставлена серьезная задача по увеличению использования ВИЭ в общем объеме производства энергии с 1 % до 4,5 % к 2020 году. Решение поставленных задач на 80 % возможно за счет биоэнергетики.

Литература

1-2.Панцхава Е.С., Будущее мировой энергетики-водород биофотолиза воды, Энергия, № 10, 2011, стр. 11-17

1-3.Михайлов А, Кризис изобилия, g. Газета. гц.

1-4.Терентьев Г.А. и др., Моторные топлива из альтернативных сырьевых ресурсов., Химия, 1989 г.

1-6.Количество легковых автомобилей в России на середину 2010 года. serega.icnet.ru.

1-8.Материал из Википедии – свободной энциклопедии, ru.wikipedia.org.

1-9.Средний пробег российского автомобиля – 16 700 км в год (Новости autokadabra.ru.

1-11.Производство дизельного топлива в России в 2012 г., portnews.ru.

1-12.Прогноз потребления МТ РФ 2008–2017.Ошибка! Недопустимый объект гиперссылки.

1-16..Ошибка! Недопустимый объект гиперссылки.

1-20.Теплоснабжение Российской Федерации в цифрах,

1-21. Теплоснабжение Российской Федерации в цифрах,

1-22.В 2013 году производство тепловой энергии в России, inmarket.ru.

1-27.Потребление электроэнергии на жителя г. Москвы, s.mos.ru.

1-28.Анализ итогов деятельности электроэнергетики за 2011 год, прогноз нп 2012 год, minenergo.gov.ru.

1-34.Кузмичев В., В России заканчивается нефть, Росбалт, 05/01/2012

1-37.Корытина Е., «Нефть за 3 доллара» Ошибка! Недопустимый объект гиперссылки..

1-38.Нтересных фактов о нефти, которых вы не знали, vseobefti.ru.

1-39. Стоимость добычи нефти в России, rusanalit.livejournal.com.

1-41. Калашников М., Нефтяной кризис в РФ неминуем, newsland.com.

1-42.НиколаевГ., Будет ли переворот в энергетике? „Наука и жизнь“ №

1-43.Изменение климата и необходимость замены ископаемых видов топлива, Solar Biofuels The Consortium, NATURE 395 (1998) 881884.)

1-44. Steady as she goes, in The Economist: London.,2006, p. 65–67.

1-45. Е.С. Панцхава и др., Биогазовые технологии, МГУИЭ, Центр «ЭКОРОС» Москва,2008.

1-46. Эксперт: Через семь лет нефти в России станет меньше… news.rambler.ru.

1-47. Нефть – Википедия., ru.wikipedia.org.

1-48. Кризис изобилия Алексей Михайлов эксперт Центра экономических и политических исследований (ЭПИцентр), g. Газета.т.

1-49. Крупнейшие экспортёры и импортёры нефти., Ошибка! Недопустимый объект гиперссылки.

1-50. Китай в 2012 году увеличил импорт нефти на 6,8 проц., Ошибка! Недопустимый объект гиперссылки.

1-51. Расклад сил на мировом рынке нефти., Ошибка! Недопустимый объект гиперссылки.

Глава 2. Биомасса