Ниже представлены короткие описания различных способов переработки биомассы: термохимические методы переработки, физикохимические методы переработки биомассы, а также биохимические методы.
Рис. 4–1. Технологии переработки биомассы. Переработка биомассы [4–1]
4.1. Термохимические технологии
4.1.1. Прямое сжигание
Древнейший, но наименее выгодный процесс с КПД получения тепловой энергии 15… 18 %. Однако существуют такие виды биомассы, которые выгоднее сжигать при условии создания тепловых агрегатов с более высоким КПД. К таким видам – биомассы относятся:
• солома злаковых и крупяных культур, стебли подсолнечника и кукурузы, из которых готовят топливные гранулы – пеллеты;
• некоторые виды древесины, древесные отходы;
• твердые отходы сельскохозяйственного производства;
• городские твердые отходы [4–2];
• отходы производства сахара из сахарного тростника – багасса, которая при прямом сжигании используется для производства пара, электричества, пульпы, бумаги, картона, корма для животных [4–3]. В 1995 г. во всем мире было получено около 200 млн. т багассы, из которых 95 % использовалось как топливо для производства сахара, заменив 40 млн т нефти.
Существует множество типов и размеров систем прямого сжигания биомассы, в которых можно сжигать различные виды топлива: птичий помет, соломенные тюки, дрова, муниципальные отходы.
Тепло, получаемое при сжигании биомассы, может использоваться для отопления и горячего водоснабжения, для производства электроэнергии и в промышленных процессах. Одной из проблем, связанных с непосредственным сжиганием, является его низкая эффективность.
Сжигание древесины может быть разбито на 4 фазы: – Кипение воды, содержащейся в древесине. Даже древесина, высушенная в течение нескольких лет, содержит от 15 до 20 % воды в клеточной структуре. – Выделение газовой (летучей) составляющей. Очень важно, чтобы эти газы сгорали, а не "вылетали в трубу". – Выделяющиеся газы смешиваются с атмосферным воздухом и сгорают под воздействием высокой температуры. – Сгорание остатков древесины (преимущественно углерод). При хорошем сжигании энергия используется полностью. Единственным остатком является небольшое количество золы.
Для эффективного сжигания необходимы три условия: 1. Достаточно высокая температура. 2. Достаточное количество воздуха. 3. Достаточное время для полного сгорания. [4–4].
Один кубический метр сухой древесины содержит 10 ГДж энергии (десять миллионов кДж). Для нагревания 1 литра воды на 1 градус требуется 4,2 кДж тепловой энергии. Для того, чтобы довести до кипения литр воды, потребуется менее 400 кДж, содержащиеся в 40 кубических сантиметрах древесины – то есть небольшая деревянная палочка. На практике на открытом огне потребуется, по крайней мере, в 50 раз большее количество древесины. Эффективность преобразования не превышает 2 %.[4–4] Разработка печей или котлов, способных эффективно использовать энергию топлива, требует понимания процессов сгорания твердого топлива. Первым процессом, потребляющим энергию, является испарение содержащейся в древесине воды. Для относительно сухого топлива на испарение используется лишь несколько процентов от общего количества выделяемой энергии. В самом процессе сгорания всегда имеются две стадии, потому что любое твердое топливо содержит две сгораемые составляющие. Летучие компоненты выделяются из топлива при повышении температуры в виде смеси паров и испаренных смол и масел. При сжигании этих продуктов образуются небольшие пиролизные струи. [4–4]. Современные устройства для сжигания (котлы) обычно производят тепло, пар, используемый в промышленных процессах, или электроэнергию. Устройство систем прямого сжигания варьируется в зависимости от варианта использования. Выбор топлива также влияет на дизайн и эффективность систем сжигания. Системы прямого сжигания биомассы подобны аналогичным устройствам, сжигающим уголь. На практике биомасса может сжигаться совместно с углем в небольшой пропорции в существующих угольных котлах. Биомасса, сжигаемая совместно с углем, представляет собой дешевое сырье, например отходы лесного или сельского хозяйства. Это помогает уменьшить выбросы в атмосферу, обычно связанные с использованием угля. [4–4]
4.1.2. Пиролиз
Термохимическая конверсия сырья без доступа воздуха при температуре 450…550 °C позволяет из 1 м3 абсолютно сухой древесины получать: 140… 180 кг древесного угля, не содержащего ни серы, ни фосфора и используемого для получения лучших сортов стали, 280.. 400 кг жидких продуктов – метанола, уксусной кислоты, ацетона, фенолов; 80 кг горючих газов – метана, монооксида углерода, водорода [4–2].
Разные виды высокоэнергетического топлива могут быть получены с помощью нагрева сухой древесины и даже соломы. Процесс использовался в течение столетий для получения древесного угля. [4–4].
Традиционный пиролиз заключается в нагреве исходного материала (который часто превращается в порошок или измельчается перед помещением в реактор) в условиях почти полного отсутствия воздуха, обычно до температуры 300 – 500 °C до полного удаления летучей фракции. Остаток, известный под названием древесный уголь, имеет двойную энергетическую плотность по сравнению с исходным материалом и сгорает при значительно более высоких температурах. В зависимости от влажности и эффективности процесса, 4-10 тонн древесины требуется для производства 1 тонны древесного угля. В случае если летучие вещества не собираются, древесный уголь содержит две трети энергии исходного сырья.[4–4].
Пиролиз может проводиться в присутствии малого количества кислорода (газификация), воды (паровая газификация) и водорода (гидрогенизация). Одним из наиболее полезных продуктов в этом случае является метан, представляющий собой топливо для производства электроэнергии с помощью высокоэффективных газовых турбин.
Более сложная техника пиролиза позволяет собрать летучие вещества. Кроме того, контроль температуры позволяет контролировать их состав. Жидкие продукты могут использоваться в качестве жидкого топлива. Однако они содержат кислоты и должны очищаться перед использованием.[4–4]. Получение древесного угля.
Производство древесного угля охватывает широкий диапазон технологий от простых и рудиментарных земляных устройств до сложных, обладающих большой мощностью реторт. Использование различных технологий приводит к получению древесного угля разного качества.
Типичные параметры качественного древесного угля: – Содержание золы – 5 %. -Содержание углерода – 75 %. -Содержание летучих компонентов – 20 %. -Плотность – 250–300 кг/м3. Физические параметры – Умеренно рыхлый.
Усилия по оптимизации производства древесного угля направлены на оптимизацию приведенных выше параметров при минимальных инвестициях и затратах на обслуживающий персонал и максимальном выходе угля по отношению к количеству древесины на входе. [4–4] Производство древесного угля состоит из шести главных этапов:
• Подготовка древесины.
• Сушка или уменьшение влажности.
• Предварительная карбонизация – уменьшение количества летучих компонентов.
• Карбонизация – дальнейшее уменьшение количества летучих компонентов.
• Завершение карбонизации – увеличение содержания углерода.
• Охлаждение и стабилизация древесного угля.
Первый этап состоит из сбора и подготовки основного сырья – древесины. [4].
Второй этап получения древесного угля выполняется при температурах от 110 до 220 °C, заключающийся в уменьшении количества воды в древесных порах, воды, содержащейся в клетках и химически связанной воды.
Третий этап проводится при температурах от 170 до 300 °C и называется этапом предварительной карбонизации. На этом этапе выделяются пиролизные жидкости в форме метанола и уксусной кислоты, а также малое количество окиси и двуокиси углерода.
Четвертый этап выполняется при температурах от 200 до 300 °C, когда образуется основная часть легких смол и пиролизных кислот. В конце этого этапа образуется древесный уголь, являющийся результатом карбонизации древесных остатков.
На пятом этапе при температурах от 300 до максимальной 500 °C завершается выделение летучих компонентов и увеличивается содержание углерода в угле. [4] На шестом этапе полученный уголь охлаждают в течение, по крайней мере 24 часов, чтобы увеличить его устойчивость и снизить риск самопроизвольного возгорания.
Наконец, финальный этап заключается в извлечении угля, упаковке, транспортировке, оптовой и розничной продаже потребителям. [4–4]
4.1.3. Газификация
Сжигание биомассы при температуре 900… 1 500 °C в присутствии воздуха или кислорода и воды с получением синтез-газа, состоящего из смеси монооксида углерода, водорода и стеклообразной массы (7… 10 % массы исходного материала), применяемой как наполнитель для дорожных покрытий. Газификация – более прогрессивный и экономичный способ использования биомассы для получения тепловой энергии, чем пиролиз. Синтез-газ имеет высокий КПД тепловой конверсии. Он может употребляться для получения метанола, этанола и углеводородов. [4–2].
Интерес к газификации вновь возрос во время энергетического кризиса 70-х годов, а затем упал вместе с снижением цен на нефть в 80х годах. По оценкам Мирового Банка (1989) всего лишь 1000–3000 газификаторов установлено в мире, преимущественно в Южной Америке для производства древесного угля. [4].
Газификация древесины.
Газификация древесины называется также газогенерацией или сухой перегонкой. Монооксид углерода, метиловый газ, метан, водород, газообразные углеводороды и другие компоненты в различных пропорциях могут быть получены с помощью нагрева или сжигания древесины в условиях отсутствия или недостатка кислорода. В разных процессах получаются разные продукты. Если при сжигании древесины обеспечить необходимое количество кислорода, то в процессе такого сжигания образуются двуокись углерода, вода, небольшое количество золы (соответствующее содержанию неорганических веществ) и тепло. Этот тип сжигания реализуется в обычных древесносжигающих печах. После начала процесса горения можно ограничить поступление воздуха. При этом горение будет продолжаться, но с частичным сгоранием. В случае полного сгорания углеводорода (древесина в основном состоит из углеводородов) кислород объединяется с углеродом, а также с водородом. В результате чего получаются CO2 (двуокись углерода) и H2O (вода). Ограниченное количество воздуха и тепло обеспечивают продолжение неполного сгорания. В этих условиях один атом кислорода объединяется с одним атомом углерода, в то время как водород взаимодействует с кислородом лишь частично. В результате получается монооксид углерода, вода и газообразный водород. Кроме того, образуются и другие компоненты, например, углерод в виде дыма. Под воздействием тепла разрываются химические связи в молекулах сложных углеводородов, содержащихся в древесине (а также в любом другом углеводородном топливе). Одновременно в процессе объединения атомов углерода и водорода с кислородом выделяется тепло. Таким образом, процесс поддерживает сам себя. Если количество воздуха недостаточно, то в результате такого процесса образуется достаточно тепла для разложения молекул древесины, но продуктами этого процесса будут монооксид углерода и водород – горючие газы. Другие продукты неполного сгорания – это преимущественно диоксид углерода и вода.[4–4].
В процессе возгонки древесины образуются метан, метиловый газ, водород, углекислый и угарный газы, древесный спирт, углерод, вода, а также многие малые добавки. Количество метана может достигать 75 %.[4–4].
При воздушной газификации производится генераторный газ (ГГ) с высшей тепотворной способностью 4…6 МДж/м3 (низкокалорийный газ). Этот газ можно сжигать в котлах, после очистки – в газовых двигателях или турбинах, но он не пригоден для транспортировки по рыбоводу, ввиду низкой энергетической плотности. Газификация с использованием кислорода дает средне-калорийный газ (10… 12 МДж/м3), пригодный для ограниченной транспортировки по трубопроводу и для использования в качестве синтез-газ с целью получения метанола и газолина. Среднекалорийный газ (15…20 МДж/м3) может быть получен также путем паровой (пиролитической) газификации. Это двухстадийный процесс, реализуемый в двух реакторах кипящего слоя. [5–5].
Основные технологии могут быть разделены на газификацию в плотном (неподвижном) слое с восходящим/ нисходящим/ поперечным движением газа, газификацию в кипящем слое (стационарный КС, ЦКС, два реактора КС) и газификацию в потоке. [5–5].
Особенностью реактора с НДГ – это движение газа вниз через опускающийся плотный слой сырья. Такая технология обеспечивает получение почти чистого генераторного газа с содержанием смол 50…500 мг/нм3. ГГ может использоваться в газодизельных электростанциях небольшой мощности. В гафикаторах плотного слоя с ВДГ биомасса, поступающая сверху вниз, сначала просушивается ГГ, который движется вверх. Затем твердое сырье пиролизируется с образованием углистого вещества, которое продолжает двигаться вниз и проходит стадию газификации. Парообразные продукты пиролиза уносятся вверх горячим ГГ. Смолы, содержащиеся в этих продуктах, конденсируются на холодном опускающемся сырье или уносятся из реактора произведенным газом. Таким образом, концентрация смол в генераторном газе увеличивается и может достигать 10…100 г/нм3. Ввиду значительного содержания смол, без дополнительной очистки газ может только сжигаться в котле, расположенном в непосредственной близости от установки. Газификаторы с ПДГ в работе во многом сходны с газификаторами с НДГ. Воздух или смесь воздуха с паром подводятся в реактор через боковую стенку в нижней части корпуса реактора. ГГ отводится из реактора с противоположной стороны. Широкого распространения газификаторы данной конструкции не получили. Отличительными особенностями газификаторов с КС по сравнению с реакторами плотного слоя являются высокие скорости тепло– и массопереноса и хорошее перемешивание твердой фазы, что обеспечивает высокие скорости реакции и близкую к постоянной температуру слоя. Частицы сырья должны быть более мелкими, чем при газификации в плотном слое, то есть необходимо дополнительное измельчение. Реакторы с КС – единственный вид газификаторов, работающих с изотермическим слоем сырья. Производится ГГ с содержанием смол 5…10 г/нм3, что является средним показателем между газификацией с ВДГ и НДГ. При газификации в ЦКС частицы, унесенные из реактора потоком газа, отделяются от ГГ в циклоне и возвращаются обратно в слой для увеличения степени конверсии углерода. Произведенный ГГ в большинстве коммерческих приложений используется для сжигания в котлах. Технология газификации биомассы в КС и ЦКС может быть реализована как при атмосферном, так и при высоком давлении. Преимущества этой технологии проявляются при использовании в крупных парогазотурбинных установках с внутрицикловой газификацией БМ. В этом случае не требуется дополнительного сжатия ГГ перед подачей в камеру сгорания газовой турбины. Установка с двумя реакторами КС позволяет получить ГГ с более высокой теплотворной способностью, чем в случае одного КС с воздушным дутьем. Первый реактор по своей функции близок к пиролизу. Теплота привносится в него горячим песком, циркулирующим между двумя ректорами. Смесь генераторного газа, густого вещества, золы и песка из газификатора поступает в циклон, где твердая фракция отделяется и попадает во второй реактор с КС (камеру сгорания). Углистое вещество сгорает, а нагретый песок возвращается в первый реактор. Произведенный генераторный газ имеет высокую теплотворную способность, однако содержит много смол, поскольку процесс конверсии сырья близок к пиролитическому. До настоящего времени имеется небольшой опыт работы с БМ в таких установках. Среди других видов реакторов можно выделить [4–5]:
• Реактор с движущимся слоем (горизонтальный слой, наклонный слой, многокамерная печь, печь со шнеком): механическое перемещение слоя сырья. Газификация в таком реакторе обычно является низкотемпературной.
• Вращающаяся печь: в основном используются для переработки отходов ввиду хорошего контакта газа и твердых частиц и хорошего перемешивания сырья. Необходима тщательно продуманная конструкция для избежания уноса твердых частиц.
• Циклонные и вихревые реакторы: высокие скорости движения частиц обеспечивают высокие скорости протекания реакций. Циклонные газификаторы отличаются простотой конструкции. Однако они лишь недавно стали применяться для конверсии биомассы, и технология еще не до конца отработана.
4.1.4. Коммерческие и демонстрационные установки газификации биомассы с целью выработки теплоты в Европейских странах и США [4–5]
Газификация БМ с целью получения тепловой энергии достигла коммерческого уровня. Наиболее известными сегодня являются газификаторы с ВДГ Bioneer компании Bioneer Oy (теперь Foster Wheeler Energia Oy, Финляндия) и реакторы PRM Energy Systems, Inc. (США), газификаторы с ЦКС Pyroflow компании A. Ahlstrom Oy (теперь Foster Wheeler Energia Oy) а также компаний Lurgi Energie und Umwelt (Германия) и TPS Termiska Processer AB (Швеция). Foster Wheeler Energia Oy входит в состав Foster Wheeler Corporation с главным офисом в США [3]. Кроме упомянутых выше, в мире имеется около 25 производителей газификаторов с НДГ и более 10 производителей газификаторов с КС и ЦКС; ряд компаний выпускает реакторы с ВДГ и другие виды. Производители газификаторов с НДГ – это, в основном, мелкие компании, выпускающие газификационные системы небольшой мощности (ректор + двигатель внутреннего сгорания) и уже соорудившие 1–2 демонстрационные установки. Среди крупных производителей газификаторов можно выделить PRIMENERGY Inc. (США, ВДГ), Babcock & Wilcox Volund ApS (Дания, ВДГ), KARA Energy Systems BV (Нидерланды, НДГ, КС), Kvaerner Pulping AB Power Division (Швеция, ЦКС), Future Energy GmbH (Германия, НДГ, газификация в потоке). На установках, производящих только тепловую энергию, генераторный газ, в основном, сжигается в котлах или используется в печах для обжига извести. [4–5].
4.1.4.1. Газификатор Bioneer с восходящим движением газа
Газификатор Bioneer с ВДГ разработан в Финляндии компанией VTT в сотрудничестве с SME Company. Bioneer проводит низкокалорийный генераторный газ с большим содержанием смол. Генераторный газ может применяться на тепловых станциях 1…15 МВтт и мини-ТЕЦ 1…3 МВтэ, на дизельных электростанциях после каталитической очистки. В 1982–1986 гг. были построены девять газификаторов Bioneer (4…5 МВтт) и введены в эксплуатацию на коммерческом уровне в Финляндии и Швеции: восемь – на тепловых станциях малой мощности, один – в паре с сушильной печью. Газификаторы Bioneer полностью автоматизированы. В настоящее время технология газификации, подобная Bioneer, предлагается также компанией Carbona Oy (Финляндия) [4–5].
В целом, газификация в плотном слое с ВДГ проявила себя как надежная и экономически жизнеспособная технология для использования на тепловых станциях небольшой мощности. Требования к качеству сырья соответствуют способу применения генераторного газасжигание в котле. Наиболее подходящим топливом является древесная щепа, тогда как газификация измельченной коры, опилок и измельченной строительной древесины вызывает определенные проблемы.
4.1.4.2. Газификатор Pyroflow с циркулирующим кипящим слоем
Газификатор Pyroflow с ЦКС разработан компанией A. Ahlstrom Oy. Первый коммерческий газификатор мощностью 35 МВтт был установлен в 1983 г. для обжиговой печи компании Wisaforest Oy (Финляндия). После этого еще три газификатора мощностью 15…35 Мвтт были установлены для коммерческого использования полученного газа в обжиговых печах в Швеции и Португалии.
Простая технология газификации, реализованная на ТЭЦ Kymijarvi, подходит только для древесной биомассы и чистой горючей части отходов. При такой техноогии много золы вместе с генераторным газом попадает в угольный котел. Использование ряда других потенциальных видов биомассы (солома, энергетические культуры) и отходов (промышленные, ТБО) практически невозможно, поскольку они содержат большое количество хлора, щелочных металлов и алюминия, которые вызывают коррозию и засорение трактов котла 4–5].
4.1.4.3. Газификатор Lurgi с циркулирующим кипящим слоем
Немецкая компания Lurgi Energie und Umwelt является известным разработчиком и производителем газификаторов с циркулирующим кипящим слоем. Первый коммерческий газификатор мощностью 27 МВтт был установлен в 1987 г. на крупной бумажной фабрике в Австрии и работал на древесной коре. Процесс газификации протекал при давлении около 1 бара, проведенный ГГ частично охлаждался и сжигался в печи для обжига извести. С 1996 г. реактор Lurgi 100 МВтт эксплуатируется на цементном заводе в Rudersdorf (Германия). Генераторный газ используется в кальцинаторе цементной печи, обеспечивая 30…40 % необходимой тепловой энергии. Зола применяется для производства цемента. Газификатор работает только на достаточно чистой биомассе (древесных отходах). Lurgi имеет также установки на электростанциях в Нидерландах и Италии.[4–5].
4.1.4.4. Газификатор PRM Energy Systems с восходящим движением газа
PRM Energy Systems (США) уже более 20 лет специализируется на коммерческих газификаторах ВДГ и имеет 19 установок, работающих на пяти континентах мира. Ежегодно на этих установках перерабатывается около 500 тыс. т биомассы, в основном, рисовой шелухи.
Как правило, произведенная тепловая энергия используется в промышленных сушильных аппаратах или в промышленных технологических процессах в виде насыщенного пара низкого давления. Ряд установок также вырабатывают электроэнергию. Первые два коммерческих газификатора были внедрены на крупной фабрике по переработке риса в 1982 г. в США. Произведенный ГГ сжигается в котле, замещая потребление природного газа, а пар используется в сушильных аппаратах. С 1985 г. газификаторы этой компании работают в Австралии, с 1987 г. – в Малайзии, с 1995 г. – в Коста-Рике.
Одна из последних установок PRM Energy Systems (4 МВтэ) построена в 2003 г. в Rossano (Италия). Она состоит из газификатора PRMES KC-18, системы охлаждения, очистки и контроля качества генераторного газа, а также шести газовых двигателей Guascor S.A. (Испания). Газификатор работает на жмыхе маслин (потребление 4500 кг/час) без какой-либо предварительной подготовки сырья.[5–5].
4.1.4.5.Другие газификаторы
Организация Wamsler Umwelttechnik GmbH (теперь Hugo Petersen Umwel-tengineering, Германия) имеет успешный опыт работ по созданию газификационных установок с нисходящим движением газа. В 1994 г. три такие установки тепловой мощностью 0,6…1,5 МВт были запущены в Германии, с 1998 г. работает демонстрационная установка мощностью 0,6 МВт. Wamsler также имеет опыт в очистке генераторного газа в скрубберах и эксплуатации газодизельного двигателя мощностью 200 кВтэ, работающего на генераторном газе.[5–5].
Институт технологий газа (Institute of Gas Technology, США) и фирма Enviropower Inc. (совместное предприятие Tampella Power Systems, Финляндия, и Vattenfall AB, Швеция), теперь Carbona Inc. (Финляндия), провели работы по доведению до коммерческого уровня технологии газификации БМ под давлением с использованием парогазотурбинных установок. В рамках этой программы в г. Тамере (Финляндия) была сооружена и в 1993 г. запущена пилотная установка с газификатором Tampella ЦКС мощностью 15 МВтт. Установка использовалась для отработки газификации под давлением и производства тепловой энергии. Было наработано более 2000 часов и переработано более 5000 т сырья. Сырьем для газификации служит смесь кокса, биомассы и угля. Биомасса представляет собой различные виды древесных отходов, солому и стебли люцерны. Сырье подвергается предварительному измельчению и просушке. Газификация протекает при температуре 850 °C и давлении 20 бар. [5].
Совместные работы Института технологий газа и Carbona Inc. закончились созданием коммерческого газификатора IGT RENUGASTM. Газификация в этом реакторе проходит при температуре 840…950 °C. Дутьем является смесь воздуха и пара. В настоящее время установка мощностью 8 МВтэ действует на сахарном заводе в Paia, Гавайи (мощность по сухому сырью 50 т/день).
4.1.5. Сжижение
Производство жидкого топлива из биомассы путем термической конверсии: термический пиролиз или газификация в присутствии катализаторов. Реакции происходит так, чтобы в качестве основного продукта получалось жидкое топливо, и при этом можно производить уголь и газ.
4.1.6. Быстрый пиролиз
Биомасса в течение короткого времени подвергается воздействию экстремально высоких температур (700… 1 400 °C), в результате которого происходят быстрое разложение исходных продуктов и образование новых соединений: этанола, пропилена, углеводородов, близких к бензину. Газ, получаемый с помощью быстрого пиролиза, содержит водород, метан, этилен, пропилен. Использование быстрого пиролиза биомассы выгоднее, чем пиролиза угля, так как биомасса содержит значительно меньше золы, и ее можно подвергнуть воздействию более низких температур. Этому направлению, очевидно, принадлежит будущее. [4–2]
4.1.7. Синтез
Каталитический синтез метанола из газов, образующихся при термической конверсии биомассы. Изменяя температуру и давление, а также используя уникальные катализаторы, кроме метанола можно получить целый ряд других соединений. Промежуточные соединения образуются и из лигнина. Из 1 т древесины можно синтезировать 410…540 л метанола. Если синтез производить в присутствии водорода, получающегося при электролизе воды, то выход метанола увеличивается до 1 400 л. [4–2].
4.1.8. Синтетические топлива
В газификаторах, использующих кислород вместо воздуха, можно получать газ, состоящий преимущественно из H2, CO и CO2. Представляет интерес то обстоятельство, что после удаления СО2 можно получить так называемый синтез-газ, из которого в свою очередь можно синтезировать практически любое углеводородное сырье. В частности, при взаимодействии Н2 и СО получается чистый метан. Другим возможным продуктом является метанол – жидкий углеводород с теплотворной способностью 23 ГДж/т. Производство метанола требует организации сложного химического процесса с высокими температурами и давлением и дорогого оборудования. Несмотря на это, интерес к производству метанола объясняется тем, что он представляет собой ценный продукт – жидкое топливо, способное непосредственно заменить бензин. В настоящее время производство метанола с использованием синтез-газа не является коммерческим. Однако технология существует для использования угля в качестве сырья. Она была развита странами, имеющими большой угольный потенциал, в периоды перебоев с поставками нефти. [4]. Разработан процесс ожижения растительной биомассы методом гидрогенизации при 350 °C под давлением водорода при 6,4 МПа. Из 1 т биомассы получают 24 кг синтетической нефти и 160 кг остатка типа асфальта.[6]. Одним из методов получения жидких моторных топлив является термическое растворение древесины в нефтяных фракциях при 380–450 °C под давлением 10,0 МПа. При этом происходит ожижение древесины.[4–6] В США имеется экспериментальная установка, где из 1000 кг древесной щепы получается 300 кг топлива типа сырой нефти. Процесс ведут при давлении 28 МПа и температуре 350–375 °C. В качестве катализатора применяют карбонат натрия.[4–6]
В ряде стран (Италия, ФРГ, Аргентина и др.) созданы специальные энергетические плантации быстрорастущих пород древесины и других пород на землях, не пригодных для сельского хозяйства.
Плантации ивы в Швеции на заболоченных землях дают 25 т древесины с 1 га в год. Сбор древесины осуществляется через 2 года специальными комбайнами в зимнее время года, когда заболоченная земля замерзает. С 1 млн. га получается 15 млн. т древесины в виде сухого древесного топлива, что эквивалентно 20 % энергии, необходимой для этой страны.
В рамках Западноевропейской программы развития возобновляемых энергоресурсов в Италии пущен крупный биоэнергетический комплекс, рассчитанный на ежегодную переработку 300 тыс. т быстрорастущей биомассы и органических отходов. Помимо газа и тяжелых остатков будет получено 20 тыс. т жидкого топлива. В Германии имеются большие плантации рапса, из которого получают смазочные масла и дизельное топливо.
4.2. Биотехнологии
К биотехнологиям относятся такие процессы, как: биогазовые технологии; производство этанола, бутанола, изобутанола; получение биодизельных топлив, жирных кислот, растительных углеводородов; производство биоводорода, получение тепловой энергии.
4.2.1. Биогазовые технологии
Биогаз – смесь метана и углекислого газа – продукт метанового брожения органических веществ растительного и животного происхождения, осуществляемого специфическим природным биоценозом анаэробных бактерий различных физиологических групп. Метановое брожение протекает при температурах от 10 до 55 °C в трех четко определенных диапазонах: 10…25 °C – психрофильное; 25…40 °C – мезофильное; 52…55 °C – термофильное; влажность составляет от 8 до 99 %, оптимальная 92–93 %.
Содержание метана в биогазе варьируется в зависимости от химических свойств сырья и может составлять от 50 до 90 %. В зависимости от природы исходного сырья изменяется и выход биогаза: от 200 до 600 л на 1 т абсолютно сухого вещества.
К настоящему времени разработано и применяется множество технологий получения биогаза, основанных на использовании различных вариаций температурного режима, влажности, концентраций бактериальной массы, длительности протекания биореакций.
4.2.2. Биогаз полигонов ТБО (свалочный газ)
Большая часть муниципальных отходов – твердых бытовых отходов (ТБО) – представляет собой биологические материалы, а их вывоз на полигоны создает пригодные условия для анаэробного сбраживания. ТБО имеют более сложный состав, чем сырье в биогазовых установках. Сбраживание происходит медленнее, обычно в течение нескольких лет, а не недель. Конечный продукт, известный под названием «свалочный газ», также представляет собой смесь преимущественно CH4 и CO2. Теоретически выход газа в течение «жизни» полигона может составить 150–300 м3 на тонну ТБО при концентрации метана от 50 до 60 объемных процентов. Это соответствует 5–6 ГДж энергии на тонну ТБО. На практике выход биогаза меньше.
Все больше свалочный газ используется для производства электроэнергии. В настоящее время большинство установок использует двигатели внутреннего сгорания, например, стандартные судовые двигатели. При типичном выходе газа, равном 10ГДж/час, могут быть установлены двигатель и генератор мощностью 500 кВт.[4–4].
4.2.3. Производство этанола
Этанол, а также другие низшие спирты, альдегиды и кетоны – продукты спиртового брожения разнообразных сахаро– и крахмалосодержащих субстратов. Однако наиболее распространенными видами сырья для производства этанола являются отходы сахарного производства: багасса или меласса (сахарная свекла), а также крахмал кукурузы, сорго, картофеля, пшеницы и риса. В России этанол получают также при брожении гидролизатов древесины (целлюлозы).
Наиболее значительный интерес в мире к жидким биотопливам (особенно к этанолу) для использования на транспорте появился в период с 1970 по 1990 г. и обязан этим высоким ценам на нефть. Однако и в настоящее время в развивающихся странах он имеет тенденцию к продолжению вследствие экологических проблем [4–3].
В некоторых странах этанол в чистом виде или в смеси с бензином (газо-хол) широко применялся в 70-е годы для двигателей внутреннего сгорания.
Наиболее значительный интерес в мире к жидким биотопливам (особенно к этанолу) для использования на транспорте появился в период с 1970 по 1990 г. и обязан этим высоким ценам на нефть. [4–7].
В последние годы разработаны технологии получения биоэтанола из синтез-газа, что значительно расширяет сырьевые возможности от лигноцеллюлозы до угля. Эти технологии включены в производственную цепочку получения углеводородов – биокеросина и биобензина.
Продуктивность 1 акра пашни по этанолу в США:
1 акр кукурузы = 150–300 бушелей кукурузы = 420–840 галлонов (1.9 – 3.8 куб. м) этанола.
2) 1 акр травы = 5-15 тонн растительного материала = 1501200 галлонов (0.7 – 5.5 куб. м) этанола.[8].
4.2.4. Биодизельное топливо
Биодизельное топливо имеет те же характеристики, что и обычные дизельные масла, которые могут использоваться в дизельных двигателях. Биодизельное топливо может быть получено из любого маслосодержащего растения – семян рапса, сои, кактусов и т. д… Преимущество биодизельного топлива состоит в том, что его производство основано на широко известных технологиях получения растительных масел с их дальнейшим метилированные и растительных углеводородов.
В 80-е годы возрос интерес к растительным углеводородам. Как правило, эффективные продуценты углеводородов и масел являются представителями тропической и субтропической флоры. Однако и в умеренном климате имеются культурные растения, семена которых содержат значительные количество масел, – подсолнечник, конопля, лен, рапс и др.
4.2.5. Получение тепловой энергии активным компостированием (микробное окисление)
Использование этого метода для утилизации твердой биомассы и, прежде всего, твердых органических отходов также может внести существенный вклад в энергетику, в частности, в производство тепловой энергии. Метод основан на процессе бактериального окисления твердых органических веществ с образованием тепловой энергии, которая повышает температуру пропускаемого воздуха до 80…90 °C. Путем компрессии температуру выходящих газов можно поднять до 110 °C. В некоторых странах, например, в Японии, разработаны опытно-промышленные установки КПД которых достигает 95 % [4–2].
К 2030 году потребление энергии в мире вырастет на 60 % [4–9]. Эта тенденция потребует увеличения производства различных видов энергоносителей и их источников.
Одна из особенностей решения этой проблемы в ХХI веке состоит в том, что энергопроизводство должно быть экологически чистым.
Все вышесказанное потребует увеличения вклада биомассы в общий энергобаланс.
4.3. Химико-каталитическая конверсия продуктов расщепления растительных полимеров в жидкие углеводороды
4.3.1.Применение биотоплива в авиации
15 июля 2011 г. немецкая авиакомпания Lufthansa запустила первый коммерческий рейс по маршруту Гамбург – Франкфурт – на – Майне на смеси традиционного керосина и биотоплива, произведенного финской компанией Neste Oil. Использование биотоплива NExNTL стало возможным в авиации после 1 июля 2011 г., когда данный вид топлива был одобрен ASTM International – Американским обществом испытаний и материалов.[4-10].
Neste Oil принимает активное участие в программе ЕС “Европейский план авиаперевозок на биотопливе, которая поставила цель использования биотоплива и других ВИЭ в авиации в объеме 2 млн. тонн к 2020 г. Lufthansa Airbus A321 с регистрацией D-AIDG будет летать по маршруту Гамбург-Франкфурт-Гамбург четыре раза в день. Один из его двигателей будет работать на 50/50 смесь регулярных топлива и биосинтетических керосин. Био-синтетических керосин, используемые Lufthansa, получается из биомассы, состоящей из ятрофы, рыжика(растение) и животных жиров.[4-11]. Ранее биотоплива в авиации были испытаны в ряде стран.
Штурмовик А-10 летает на смеси биотоплива и авиакеросина 29 марта 2010 г.
Рис. 4–2. «Военный Паритет».
26 марта штурмовик А-10 Thunderbolt II совершил первый полет с использованием в обоих двигателях топлива со смесью биотоплива и обычного авиакеросина JP-8. Полет состоялся на базе Эглин ВВС США, расположенного вблизи Вальпараисо (штат Флорида).
Это был первый полет летательного аппарата, вся силовая установка которого работала на биотопливе. Испытательный полет явился частью работ по разработке этого вида топлива (программа HRJ – hydrotreated renewable jet), который в отличие от обычного реактивного топлива горит чище, без выделения таких соединений как сера. Работами по созданию биотоплива занимается НИИ Дейтонского университета (штат Огайо).
В качестве биокомпонента послужило семейство растений камелина, родственное горчице, капусте и брокколи, но не используемое в качестве пищи. При сжигании биотоплива уменьшается выброс твердых частиц. Это событие знаменует собой важный этап программы разработки альтернативных топлив. Такой вид топлива пройдет сертификацию на самолетах F-15 Eagle, F-22 Raptor и C-17 Globemaster III.
К 2016 году доля использования в ВВС США альтернативных видов топлива должна составить 50 %. Как заявил помощник министра
ВВС по окружающей среде и логистике Терри Йонкерс (Terry Yonkers), полет штурмовика А-10 на альтернативном топливе «подчеркивает нашу приверженность по продвижению технологий по увеличению использования возобновляемых источников энергии и сокращения объемов импортируемой нефти». [4-12].
Королевские ВВС Нидерландов недавно провели успешные испытания полетов вертолета Apache на авиабазе Gilzen-Rijen, что в Нидерландах, в ходе которых один из двух двигателей вертолета питался от альтернативного биологического топлива. Ассистентом подготовки и проведения тестирования выступила Национальная аэрокосмическая лаборатория США (NRL). В качестве биотоплива Королевские ВВС использовали смесь в процентном соотношении 50/50 устойчивого биокеросина и стандартного реактивного топлива, используемого в авиации, – чтобы удовлетворить требованиям годности к лётной эксплуатации. [4-13]
Для проведения лётных испытаний биокеросин был произведен с использованием биомассы на основе морских водорослей в количестве 5 процентов и использованного растительного масла – 45 процентов от общего объема топлива для вертолета. В некотором смысле можно считать, что состоялась мировая премьера такого вида биотоплива для двигателей вертолета.
Во время тестового полета вертолета Apache аэрокосмическая лаборатория проводила различные измерения с использованием общей измерительной системы (GIS). Эта система измеряет данные о вертолете и сохраняет их для последующей обработки в системе Omega. В частности, полученные данные GIS о показателях вертолета позволили исследователям NRL определить, что оба двигателя работали в рамках допустимых пределов, и ни вертолет, ни экипаж не сталкивались с рисками безопасности во время полета.
По сообщениям агентства Интерфакс, 25 февраля 2011 г. самолет "Боинг-747" компании Virgin Atlantic, заправленный биотопливом, совершил первый пробный полет по маршруту Лондон – Амстердам. "Один из его четырех двигателей работал на топливе, полученном из растительной массы. Полет был призван доказать, что биотопливо не замерзнет на высоте свыше пяти тысяч метров", – сообщила в понедельник британская телерадиовещательная корпорация Би-би-си.
Десять авиакомпаний согласиться приобрести топлива для реактивных двигателей, полученные из биомассы.
Группа из 10 авиакомпаний, восемь, базирующихся в США (American Air-lines и United Континентальный Holdings, также включает в себя Alaska Airlines, FedEx, Frontier Airlines, JetBlue Airways,
Southwest Airlines и США Airways), а также Air Canada и Lufthansa, подписали письма о намерениях с Вашингтоном на основе топлива Solena приобрести будущих поставок топлива для реактивных двигателей, полученные исключительно из отходов биомассы.
Рис. 4–3. Боинг 777–200. [4-14].
Согласно плану, топлива будут изготовлены из переработанных городских и сельскохозяйственных отходов на заводе, который будет построен компанией Solena в округе Санта-Клара, штат Калифорния, в 2013 году, и доставляться в аэропорты в Сан-Франциско, Окленд и Сан– Хосе.
Из биомассы в 2015 году будет производить до 16 миллионов галлонов реактивного топлива поддержки деятельности авиакомпаний в трех аэропортах. В рамках проекта будут перерабатывать около 550 000 тонн отходов, которые в противном случае пойдет на свалку, в то же время производство топлива для реактивных двигателей с низким уровнем выбросов парниковых газов и местных загрязняющих веществ, чем топлива на основе нефти.
Источники сообщили, что на основе реактивного топлива из биомассы будет сожжено с традиционным реактивным топливом, возможно, до 50/50 смесь, и будут распределены между авиакомпаниями пропорционально в зависимости от их использования топлива в аэропортах.
За этим соглашением последует ряд других… Solena Group, а также передовые компании в области биоэнергетики и биотоплива, подписали соглашения в этом году с перевозчиками по всему миру. LOI с British Airways создадут первый в Европе завод по производству авиационного биотоплива в восточном Лондоне с целью преобразования 550000 тонн отходов в год, в противном случае, предназначенные для свалки мощностью на 16 миллионов галлонов реактивного биотоплива.[4-15].
После ввода в эксплуатацию в 2014 году этот завод стоимостью 200 млн фунтов будет конвертировать до 500,000 тыс. тонн отходов в год в 16 млн. галлонов авиабиотоплива, которого будет достаточно для питания 2 % своих самолётов на главной базе в Хитроу.
Аналогичный завод планируется построить в Австралии.
Компания Solena ведущая в мире по производству транспортных биотоплив уверена, что самолеты могут работать на чистом биотоплива без смешения с нефтяным реактивным топливом.
Эксперты уверены, что в ближайшем будущем авиационное биотопливо будет дешевле нефтяного из-за более высоких цен на нефть.
В качестве основного сырьевого источника для производства авиационных биолтоплив эксперты рассматривают морские и пресноводные водоросли. [4-15].
Производство реактивного биотоплива для всеобъемлющего использования в высокоскоростной авиации может быть ограничено объемом выращиваемых в мире сельскохозяйственных продуктов, содержащих растительные масла или углеводороды. Эту проблему удалось решить команде из Висконсинского Университета, штат Медисон, США.
Технология основана на деградации сахаров на левулиновую и муравьинную кислоты.
Эти кислоты далее под воздействием металлических катализаторов превращаются в гамма-валеролактон – (GVL), из которого получают реактивное биотопливо.
Каталитическая переработка гамма-валеролактона является ключом к будущим полетам и к замене природного углеводородного топлива на возобновимое.
Биологическое топливо – один из основных трендов последнего времени, наряду с «зеленой химией» и глобальным потеплением. Ученые соревнуются между собой в разработке наиболее эффективных методов переработки растительного сырья как восполняемого источника энергии и наименее энергозатратных методов выделения топлива из ферментационных смесей.
Разработанная методика позволяет извлечь из исходной биомассы до 95 % энергии и не требует больших количеств водорода.
Группа исследователей, сообщивших об этом открытии, специализируется на переработке целлюлозной биомассы в транспортные топлива. Однако до этого в их методиках был большой недостаток: получаемые сахара расщеплялись до левулиновой (4-оксовалериановой) и муравьиной кислот. Существующие методики не позволяли перерабатывать эти соединения в полезные топлива.
Ученым удалось подобрать металлический катализатор, в присутствии которого левулиновая и муравьиная кислота образуют гамма-валеролактон. На первом этапе гамма-валеролактон расщепляется на бутен и углекислый газ.
На втором этапе из бутена получают алкеновые олигомеры. Авторы методики утверждают, что ее использование возможно в промышленных масштабах и не требует особенно сложного оборудования или катализаторов.
Об актуальности исследования говорит то, что до сих пор из биомассы чаще всего получают лишь этанол и другие низшие спирты. Они в больших объемах могут добавляться в бензин, не изменяя свойств и достоинств автомобильного топлива, однако совершенно не могут использоваться как авиатопливо из-за низкой энергоемкости. Кроме того, и для автомобилей спирты могут служить лишь добавкой к акантовому (углеводородному) топливу. А вот углеводороды, производимые из гамма-валеролактона, практически, эквивалентны используемым в современной инфраструктуре (с той разницей, что алканы – углеводороды насыщенного ряда, а алкены – ненасыщенного, и для получения алканов их нужно гидрировать). До сих пор наибольшую проблему для внедрения нового топлива представляла высокая цена гамма-валеролактона, так как методики его получения были дорогими и несовершенными. Теперь ученые работают над созданием более эффективных и простых методик его промышленной выработки. В качестве сырья для получения данного эфира рассматриваются такие биологические объекты, как древесина, стебли и листва кукурузы, прутьевидное просо и другая непищевая биомасса. «Как только будет найден эффективный способ промышленного синтеза гамма-валеролактона, путь к неограниченному получению возобновляемого авиатоплива будет полностью открыт», – заключают авторы работы.
4.3.2. Применение биотоплива в других видах транспорта
В мире существует три лидера по использованию жидкого моторного биотоплива: Бразилия, США и Европейский Союз. И каждый имеет свои мотивы перевода транспорта с бензина на биодизель или биоэтанол. Бразилия использует этанол из сахарного тростника, чтобы не зависеть от импорта нефти.
В США распространяется этанол из маиса (кукурузы), для того чтобы поддержать местное сельское хозяйство, с одной стороны, а с другой – улучшить состояние окружающей среды.
Европейский Союз, внедряя новые биотопливные технологии, преследует сразу несколько целей: ликвидация зависимости от импорта нефти, предотвращение глобального потепления климата, выполнение обязательств по Киотскому Протоколу, а также развитие сельского хозяйства. В 2010 году ЕС намерен использовать биотопливо в 5,75 % автомашин. К 2020 году эта цифра должна увеличиться до 8 %. Пока доля моторного биотоплива в странах Европейского Союза – порядка 2 %.
Таблица 4-1
Прогнозы ЕС по замене биотоплива
В последнее время начали бурно обсуждать новый вид биотоплива: BtL (Bio-mass-to-Liquid). BtL производят из древесины и отходов деревообработки (промежуточный продукт: син-газ). Преимущество этого вида топлива перед биоэтанолом и биодизелем состоит в том, что, в отличие от упомянутых продуктов, при производстве BtL древесина полностью перерабатывается.
В то же самое время BtL может производиться из любого вида биомассы, к тому же, по заявлению производителей этого топлива, для перевода автомобилей на него не требуется модификация современных двигателей.
По оценке немецких ученых, если BtL займет 20 % рынка ЕС, то в Европе можно уменьшить выбросы CO2 на 200 млн тонн. С другой стороны, в Германии, например, наиболее популярным видом биотоплива остается пока биодизель. В 2004 году немцы произвели 1,1 млн тонн биодизеля (в основном из рапса). 323 тысяч тонн было продано в самой Германии. Для сравнения, потребление обычного дизеля в этой стране составляет 30 млн тонн в год.
Топливные компании (Shell, Total, Neste) и автомобильные гиганты со всего мира (DaimlerChrysler, Volkswagen, Volvo (Ford) открывают программы по переводу автомобилей с традиционного топлива на возобновляемое.
DaimlerChrysler сейчас активно говорит о внедрении в своих автомобилях биотоплива – BtL. Ford недавно заявил о начале продажи в Швеции нового поколения Focus и Focus C-MAX 1.8 в версии FFV на биотопливе. FFV могут ездить как на биоэтаноле, так и на бензине.
General Motors уже продает в Швеции “экологичные” версии моделей Saab и Opel. Обе модели также могут работать на биоэтаноле (который содержит 15 % бензина), на бензине и на смеси этих видов топлива в любой пропорции.
4.4. Получение моторных топлив из газов [4-16]
До середины XIX в. человечество использовало в качестве теплоносителя для бытовых и промышленных целей (металлургия, паровые машины и др.) почти исключительно биомассу растений и продукты ее переработки (древесный уголь).
При использовании в качестве энергоносителя газа, нефти и угля возникает ряд проблем, связанных с ограниченными запасами горючих ископаемых, в особенности нефти. Помимо истощения запасов нефти важными проблемами являются перевозка на большие расстояния и хранение всех видов топлив.
В Норвегии применяются передвижные установки на лесосеках, где перерабатываются растительные отходы методом пиролиза. Производительность отдельной установки от 10 до 30 т древесного угля в сутки [4-16]. При пиролизе из 1 т отходов (щепа) получается 280 кг угля, 200 кг смолы пиролиза и около 222 кг газообразного топлива. Газообразное топливо используется для поддержания процесса пиролиза. Смола пиролиза применяется как котельное топливо или подвергается гидрооблагораживанию под давлением водорода для получения бензина и дизельного топлива. Стационарные установки пиролиза могут иметь до 40 печей и рассчитаны на переработку 300–350 тыс. т органических отходов в год [4-16].
В ряде стран (Италия, ФРГ, Аргентина и др.) созданы специальные энергетические плантации быстрорастущих пород древесины и других пород на землях, не пригодных для сельского хозяйства.
Плантации ивы в Швеции на заболоченных землях дают 25 т древесины с 1 га в год. Сбор древесины осуществляется через 2 года специальными комбайнами в зимнее время года, когда заболоченная земля замерзает. С 1 млн. га получается 15 млн. т древесины в виде сухого древесного топлива, что эквивалентно 20 % энергии, необходимой для этой страны [16].
В рамках Западно-Европейской программы развития возобновляемых энергоресурсов в Италии пущен крупный биоэнергетический комплекс, рассчитанный на ежегодную переработку 300 тыс. т быстрорастущей биомассы и органических отходов. Помимо газа и тяжелых остатков будет получено 20 тыс. т жидкого топлива. В Германии имеются большие плантации рапса, из которого получают смазочные масла и дизельное топливо.
В Латинской Америке, США и Франции из биомассы (отходов сахарного тростника, кукурузы и др.) получают этанол, используя обычно процессы брожения. В Бразилии получается более 10 млн. т этанола, который применяют как основное топливо для автомобилей (96 %-ный этанол) или в смеси с бензином – топливо “Газохол” (22 % этанола с 78 % бензина). В США из кукурузы получают более 3 млн. т этанола, который применяют в качестве добавки к бензину (5—10 %) для повышения октанового числа и улучшения процессов сгорания.
Для использования в моторных топливах предложены производные метанола и этанола, которые не координируют аппаратуру, безвредны, хорошо смешиваются и имеют высокие антидетонационные свойства [4-16]:
В настоящее время в качестве добавки для повышения октанового числа используют метилтрет-бутиловый эфир.
Разработан новый процесс синтеза нормальных парафинов и изопарафинов, а также олефинов из нового типа исходного сырья – растительной биомассы. Биомасса превращается газификацией воздухом в генераторный газ, содержащий оксид углерода и водород. В газе содержится около 50 % азота, поэтому синтез из такого газа компонентов моторных топлив состава С5 – С22 является принципиально новым. Ранее во всех технологических процессах (Фишера – Тропша, Сасол, Мобил) применяли концентрированный газ, состоящий только из СО и Н2.
Парафиновые углеводороды неразветвленного строения являются хорошими компонентами дизельных топлив. Для производства высокоцетановых моторных топлив [4-16] желательно смешение фракций синтетических парафинов с цетановым числом 77–90, полученных по методу Фишера – Тропша с дизельными фракциями нефти или продуктов гидрогенизации угля, которые имеют цетановое число 40–50.
Продукты синтеза, полученные посредством газификации биомассы, могут заменить нефтехимическое сырье.
Жидкие олефиновые углеводороды, которые получаются при синтезе, могут найти применение, помимо топливного назначения, для производства синтетических моющих средств. Из фракции углеводородов С2-С22, полученной биомассы, в процессе пиролиза на ванадиевом катализаторе могут быть получены этилен, пропилен и бутилены [4-16]. При каталитическом пиролизе образует до 40–50 % этилена и 6065 % суммы газообразных олефинов на исходное сырье. Проверка этого процесса в опытно-промышленных условиях [4-16] показала что в зависимости от применяемого сырья этилен образуется с выходом от до 40 % и олефины 60–65 %. При термическом пиролизе выход этилена обычно не превышает 25–26 %.
Таким образом, в результате переработки растительного сырья могут бы получены жидкие углеводороды – компоненты моторных топлив и олефины, частности этилен для процессов нефтехимического синтеза.
Цель настоящего исследования – разработка процесса получения компонентов жидких топлив (бензина, дизельного топлива) из продуктов газификации растительной биомассы СхНуОг при 900-1500 °C. При этом образуется газ, содержащий оксид углерода, водород, диоксид углерода и азот:
CxHyOz + O2 + N2 = CO, H2, CO2, H2O, N2
Состав продуктов газификации зависит от исходного сырья (древесная щеп солома, отходы технических культур и др.). Обычно состав газа находится пределах, %: СО 15–25, Н2 12–15, СО2 7-12, N2-50. Может присутствовать небольшое количество других примесей, например СН4.
Характерной особенностью газов газификации биомассы воздухом является большое содержание азота – 45–55 %. Ранее полагали, что азот будет препятствовать синтезу жидких углеводородов из СО и Н2.
Каталитическую газификацию биомассы древесной пульпы проводят с помощью водяного пара с подводом тепла извне в трубчатых печах на никелевых катализаторах. В этом случае из 1 т биомассы получается 150–160 кг водород диоксид углерода отделяется. В процессе пиролиза расходуется 103,0 кД тепла на 1 молекулу водорода, а при сжигании 1 молекулы выделяете 285 кДж.
В промышленности для процесса Фишера – Тропша синтез-газ получают каталитической конверсией метана с водяным паром при высоких температурах.
Газификация биомассы с водяным паром несколько сложней, чем газификация с применением воздуха, так как газогенераторы такого типа не разработаны.
Рассмотрим синтез углеводородов из генераторных газов газификации воздухе растительного сырья. Газификация воздухом (при неполном сгорании) – известный технологический процесс переработки твердого органического сырья – биомассы, торфа, бурого угля.
Газы газификации воздухом в зависимости от исходного сырья [4-16] имеют следующий состав, об.%:
Газогенераторные установки, где в качестве топлива применяли биомассу – древесину, отходы хлопка, кукурузы и др., а также уголь, ранее широко использовались. В 40-х и 50-х годах имелось более 200 тыс. различных стационарных и передвижных машин [4-16] и были сэкономлены миллионы тонн нефти. В 1980–1990 гг. газогенераторную технику использовали только в Канаде и США на лесозаготовках.
В Западной Европе в 1980–1990 гг. при уничтожении городского мусора применяли процессы газификации, получая генераторный газ, содержащий СО – 22, Н2 12–15, N2 45–50. Установки такого типа фирмы “Фест-Альпине” (Австрия) экологически чистые, а газ может применяться для получения жидкого топлива.
4.5. Газификации растительной биомассы в России[16]
В России разработан новый метод получения экологически чистых жидких моторных топлив из растительной биомассы. Топлива не содержат серу, а выделяющийся при их горении диоксид углерода вновь участвует в образовании растений. Топлива получаются из газов газификации биомассы воздухом при невысоком давлении и температуре.
В качестве аналогов газа газификации в настоящей работе использовали смесь газов следующих составов (об.%): СО – 30, Н2 – 15, CO2 – 5, N2 – 50; СО – 15, Н2 – 20, CO2 – 15, N2 – 50; СО – 28, Н2 – 15, СО2 -7, N2 – 45.
Опыты проводили при давлениях 0,1 и 1 МПа и температурах от 180 до 230 °C. Применяли промышленный Co-содержащий катализатор и катализатор, который готовили смешением основного карбоната кобальта с носителем. Все катализаторы восстанавливали в потоке водорода при 450 °C. Опыты проводили при объемной скорости (о. с.) от 50 до 200 ч-1.
Для проведения большей части опытов был выбран Co-катализатор, активный в процессе синтеза углеводородов из водяного газа (СО-Н2) по Фишеру – Тропшу.
При увеличении давления с 0,1 до 1,0 МПа в присутствии Со – содержащего катализатора выход жидких углеводородов (>С5) в отдельных опытах достигал 52 г/м3 (без избыточного давления не превышал 31 г/м3). Если отнести этот выход к 1 кг использованных для газификации отходов древесины, то при 20 %-ной влажности выход газа составляет 2,6–3 м3/кг. Если принять выход 2,6 м3/кг, то из 1 т отходов можно получить от 80 до 135 кг жидкого топлив. С учетом возможных потерь можно принять, что 1 г жидкого топлива будет получаться из 8—10 т сырья. На этих примерах показано, что из газов газификации растительного сырья воздухом можно получить компоненты жидкого топлива, бензиновые и дизельные фракции, хотя в газах синтеза содержится до 50 % азота.
Выход жидких углеводородов из 1 м3 газа (состав, об.%: СО 33, CO2 33, Н2 33) достигает 114–117 г/м3, общий – 160 г/м3. Общий выход (с учетом газообразных продуктов) достигает 170–190 г/м3, аналогично процессу Фишера – Тропша из СО-Н2. Однако газ каталитической газификации биомассы с водяным паром содержит до 20–30 % CO2, который, вероятно, также частично входит в реакцию.
Была рассмотрена возможность создания передвижных опытных установок по переработке растительной биомассы в компоненты моторного топлива. Они включают газификацию биомассы воздухом при 900-1500 °C, очистку газа и синтез жидких углеводородов.
Для синтеза можно использовать также газ, полученный газификацией растительной биомассы паром.
Таким образом, представлен процесс получения жидких моторных топлив из растительного сырья – отходов сельского хозяйства, лесодобычи и лесопереработки, который можно осуществить на передвижных или стационарных установках.
Процесс состоит из газификации органического сырья (неполного сгорания) воздухом при 900-1500 °C, в результате чего образуется газ, содержащий СО, Н2, СО2, Н2О, N2. В результате каталитической конверсии газа при 200–250 °C и 1,0 МПа получается смесь жидких углеводородов. Азот воздуха в реакцию не вступает. При этих процессах 1 т компонентов моторного топлива получается из 8 т исходного сырья. Общий КПД синтез жидкого топлива из исходного сырья (биомассы) составляет около 40 %. Из лесосечных или сельскохозяйственных отходов с 1 кв. км на передвижных установках можно получить от 100 до 200 т жидкого топлива [4-16].
Моторные топлива [4-16], полученные из растительной биомассы, экологически чистые, так как не содержат серу, а образующийся при их сгорании диоксид углерода вновь вовлекается в образование растений и не накапливается в атмосфере. Утилизация растительных отходов и отходов пластмасс оздоровляет экологическую обстановку [4-16]. Это делает возможным получить дополнительное количество моторного топлива из отходов растительного и вторичного сырья, пластмасс.
4.6. Новые научные разработки за рубежом – НИОКР [4-17]
Новое открытие позволит ученым делать топливо из CO2 в атмосфере.
Исследователи из США нашли способ преобразования углекислого газа атмосферы в полезные промышленные продукты, например, в биологическое топливо.[4-17].
Был разработан метод получения сахара непосредственно из углекислого газа, минуя процессы выращивания растений и извлечения сахара из биомассы. Для этого использовали уникальный микроорганизм Pyrococcus furiosus, или «огненный шарик», который питается углекислым газом и живет вблизи геотермальных источников. Ученые подвергли его генной модификации и вывели штамм P. furiosus, который может поглощать и перерабатывать углекислый газ в сахар при более низких температурах. При добавлении водородного газа в микроорганизме происходит химическая реакция, в которой углекислый газ превращается в 3-гидроксипропионовую кислоту, являющуюся распространенным промышленным химикатом для изготовления пластмассы и многих других продуктов.
Используя другие генетические манипуляции P. furiosus, исследователи планируют создать еще один штамм, который будет генерировать множество других полезных промышленных продуктов, в том числе топливо, из углекислого газа.
Британские ученые планируют начать переработку выбросов от электростанций в топливо [4-17].
Ученые из университета Хериот-Уатта, Эдинбург, в настоящее время работают над фотокаталитической технологией восстановления, в которой выбросы углекислого газа от электростанций будут перерабатываться в жидкое и газообразное топливо для использования в коммунально-бытовом секторе и на транспорте. Дополнительным преимуществом этого процесса преобразования является возможность использования солнечного излучения.
Новый фотокаталитический процесс позволит получать значительно больше этанола, метанола и метана, чем это возможно с существующими сегодня аналогичными технологиями. Полученное топливо может быть направлено для централизованного теплоснабжения в многоквартирных домах, а также для использования в самолетах.
В 2009 году компания Arizona Public Service получила средства в размере 70,5 млн. долларов США для финансирования проекта преобразования выбросов углекислого газа от угольной электростанции в биотопливо с использованием водорослей.
Другой компанией, специализирующейся на создании авиационного биологического топлива, является LanzaTech. Компания использует биологические процессы для извлечения дымовых газов от металлургических, нефтеперерабатывающих заводов и предприятий других отраслей химической промышленности, и последующего преобразования их в биотопливо, пригодное для использования в авиалайнерах.
Кстати, технологии утилизации парниковых газов от энергоемких отраслей могут оказаться полезными не только для авиакомпаний, но и для развивающихся стран, которые стремятся обуздать продолжающийся рост выбросов.
Ученые MIT модифицировали клетки дрожжей для получения более эффективного биотоплива [4-17].
Массачусетский технологический институт объявил о результатах работ по генной модификации обычных дрожжей для изготовления тяжелого алкоголя – изобутанола.
Дрожжи обычно создают изобутанол в небольших количествах в клетки – в митохондрии и цитоплазме. Изменив дрожжевые микроорганизмы на клеточном уровне так, чтобы производство алкоголя происходило исключительно в митохондриях, ученые смогли увеличить количество выхода этого химического вещества аж на 260 процентов. Кроме того, они смогли добиться увеличения содержания изопентанола на 370 процентов и двуметил-бутанола на 500 процентов.
Ученые разрабатывают новый метод преобразования метана в жидкое дизельное топливо [4-17]..
Национальная лаборатория по возобновляемой энергетике (NREL) Департамента энергетики США будет способствовать разработке микробов, которые преобразуют метан, содержащийся в природном газе, в жидкое дизельное топливо. Количество природного газа, выпускаемого нефтяными скважинами во всем мире, огромно, и составляет примерно одну треть от ежегодного объема нефти, которая используется на предприятиях Соединенных Штатов. При этом каждая молекула метана, выбрасываемого в атмосферу, по причиняемому вреду окружающей среде эквивалентна 12-ти молекулам диоксида углерода.
Рис. 4–4. Клетки бактерий, перерабатывающие метан в дизельное топливо.
По мнению ученых из консорциума, образованного университетом Вашингтона, NREL и компаний Johnson Matthey и Lanza Tech, если сбрасываемый в атмосферу газ превратить в жидкость, то его можно будет транспортировать вместе с нефтью на НПЗ, где его можно будет конвертировать в дизельное топливо для грузовых и легковых автомобилей или даже топливо для реактивных двигателей. Для этого они предложили разработать микроб, который будет поглощать метан из газа. Это предложение поддержало Агентство перспективных исследований в энергетике (ARPA-E), выделив грант в размере 4,8 миллиона долларов США на проведение необходимых работ.
Как сообщается, работа ученых из университета Вашингтона сосредоточена на генетической модификации микробов. Лаборатория NREL будет отвечать за разработку более эффективных процессов брожения и извлечения липидов из микроорганизмов, а также проводить анализ экономического потенциала новой технологии. Третий партнер, компания Johnson Matthey из Великобритании, будет производить катализаторы, которые превращают липиды в метановое топливо. И, наконец, компания Lanza Tech из Иллинойса, пионер в области технологий преобразования отходов в топливо, подписала контракт на проведение лабораторного тестирования технологии и в случае его успеха на коммерциализацию и запуск в промышленное производство.
Ученые будут использовать свой опыт в области производства биотоплива и липидов из морских водорослей для разработки технологии, основанной на новом сырье – природном газе. Они начнут с микроорганизмов, которые для своего естественного роста используют метан, и которые имеют природную способность выделять из него липиды. Однако, для того, чтобы микроорганизмы смогли производить достаточно липидов, их нужно модифицировать с помощью генной инженерии. Конечный продукт деятельности микроорганизмов представляет собой промежуточное топливо, которое подлежит переработке в дизельное или реактивное топливо, или же может быть использовано в качестве источника питания для оборудования или источника тепла для обогрева зданий.
Прорыв в производстве биотоплива: выявлены ферменты для повышения сахара галактана[4-17]..
Исследователи от Министерства энергетики (DOE) недавно идентифицировали ферменты, способные существенно повысить количество сахара галактана, который присутствует в клеточных стенках растений. Галактан представляет собой один из видов галактозы, 6-углеродную сахарозу, которая легко ферментируется в этанол с использованием дрожжей. Это давно известное в научном мире вещество представляет особый интерес для исследователей, которые разрабатывают технологии производства биотоплива из «целлюлозной биомассы».
Новая городская система генерирует энергию, очищая сточные воды Парижа[4-17].
На днях парижская компания Ennesys, производитель энергетический систем, и американская компания по уборке водорослей OriginOil представили новый городской демонстрационный проект для городка Ла Дефане, что недалеко от Парижа. В этой инновационной системе используются морские водоросли, которые будут не только вырабатывать электричество, но и фильтровать сточные воды для смыва в унитазах здания или полива растений.
Растительно-микробные топливные элементы генерирует электроэнергию из живых растений [4-17].
Согласно оценкам, водно-болотные угодья составляют около шести процентов поверхности Земли, и новая технология создания растительно-микробных топливных элементов, разработанная в нидерландском НИИ Вагенингена, смогла бы превратить эти районы в жизнеспособные источники возобновляемой энергии. Разработчики считают, что их технология может быть использована не только для обеспечения электроэнергией отдаленных районов, но и для генерации электричества на зеленых крышах домов.
В отличие от обычных микробных элементов, которые вырабатывают биогаз путем анаэробного сбраживания или ферментации “мертвой” биомассы, растительно-микробные топливные элементы генерируют электричество, но при этом растения остаются живыми и продолжают расти. Важно отметить, что система не влияет на рост растений и не приносит вреда окружающей среде.
Система работает за счет использования органического материала, который образуется в результате фотосинтеза, но который не может быть использован растением и выводится через корни. Естественные бактерии вокруг корней расщепляют эти органические остатки, высвобождая электроны. Разместив электроды непосредственно около бактерий, исследователи из университета Вагенингена получили топливно-микробный элемент, который генерирует энергию.
В настоящее время созданный ими опытный образец растительно-микробного топливного элемента может генерировать только 0,4 Ватта электричества на квадратный метр выращиваемых растений. Однако, исследователи утверждают, что он гораздо эффективнее, чем топливные элементы на основе брожения биомассы. В будущем система сможет генерировать до 3,2 Ватта на квадратный метр – это значит, что зеленая крыша площадью 100 квадратных метров полностью обеспечит дом электроэнергией при среднем потреблении 2800 кВт*ч в год.
Технология еще нуждается в совершенствовании, но несмотря на это, растительно-микробные топливные элементы уже могут конкурировать по рентабельности и экономичности с солнечными батареями в отдаленных районах. Ученые провели первые испытания системы и открыли компанию под названием Plante, в рамках деятельности которой они планируют довести технологию до коммерциализации и выпустить первые готовые продукты уже в следующем году.
Новый процесс позволяет получить дизельное топливо напрямую из сахара[4-17].
Исследователи из института энергетических биологических наук (EBI) разработали процесс производства биотоплива из возобновляемых источников, таких как сахар и крахмал, который может быть коммерциализован всего через пять – десять лет. Несмотря на то, что получаемое топливо дороже, чем нефть, оно выделяет больше энергии на галлон, чем этанол. Более того, по словам ученых, производство биотоплива по новой технологии будет способствовать сокращению выбросов парниковых газов от транспорта.
В Канаде совершил первый полет реактивный авиалайнер на чистом биотопливе[4-17].
Сегодня все большее количество компаний-авиаперевозчиков вводят маршруты для гражданских самолетов, летающих на биотопливе. Теперь в их списке числится и канадская компания Air Kanada. Однако, в отличие от других компаний, которые используют для своих самолетов смесь из обычного и биологического топлива, AirKanada планирует запустить рейсы авиалайнеров на чистом биотопливе, изготовленном исключительно из органического сырья – семян масличных культур.
Биотопливо из водорослей: всего за одну минуту? [4-17]..
Исследователи из Мичиганского университета экспериментировали с приготовлением зеленых морских микроводорослей и обнаружили, что одна минута – это все, что потребовалось, чтобы преобразовать 65 процентов исходного материала в сырье для производства биологического топлива.
Биотопливо, электроника и продукты для здоровья – из диатомовых водорослей[4-17].
Диатомовые водоросли представляют собой крошечные морские формы жизни, которые существуют на Земле еще со времен динозавров и которые формируют основу для большей части морской пищевой цепи, однако, до настоящего времени на них никто не обращал внимания. А вот команда ученых из Университета штата Орегон считает, что они могут быть использованы для экономически рентабельного производства биологического топлива, а также для изготовления других ценных продуктов, таких как полупроводники, биомедицинская продукция и даже продукты для здорового питания.
Отходы от ликеро-водочного завода будут преобразованы в биотопливо.
Недавно ликеро-водочный завод подписал соглашение с шотландской компанией по возобновляемым источникам, которое подразумевает разработку технологии включения побочных продуктов от производства виски в топливо. Компании будут использовать два побочных продукта производства виски для выработки бутанола нового поколения, или биобутанола.
Мобильный агрегат может производить биотопливо для военных и гуманитарных операций[4-17].
Исследователи из Аргоннской национальной лаборатории (ANL) Департамента энергетики США недавно создали устройство, которое они назвали Долговечный Биоэнергетический Реактор (Endurance Bioenergy Reactor, EBR). Этот агрегат может производить биотопливо прямо на месте, используя в качестве сырья отходы от кухонь и туалетов.
Свежий взгляд на производство биотоплива: из навоза[4-17].
В своем стремлении разработать технологию по выработке менее дорогого и более эффективного биотоплива, ученые всего мира исследуют самые различные потенциальные источники, начиная от растений, таких как кукурузные стебли и просо, и заканчивая морскими водорослями. Но недавно исследователи из университета Висконсина-Мэдисона объявили, что они, возможно, нашли самый подходящий ингредиент для производства топливного этанола – коровий навоз с мясомолочных ферм.
В Бразилии строится завод по производству биотоплива из водорослей по австрийской технологии[4-17].
Рис. 4–5. Водоросли для производства биотоплива.
В штате Пернамбуку на северо-востоке Бразилии вскоре будет запущена первая в мире промышленная установка по производству биотоплива из водорослей. Этот проект стал результатом сотрудничества между компанией See Algae Technology (SAT), австрийским разработчиком оборудования для промышленного производства водорослей, и компанией JB, которая является одним из ведущих в Бразилии производителей этанола. Завод будет производить биомассу из природных и генетически модифицированных штаммов водорослей.
Новый завод по производству биодизеля построен на Кубе [4-17].
Рис. 4–6. Плоды кустарника семейства «Ятрофа».
Как объявили на днях СМИ, на Кубе запущен новый завод по производству биодизельного топлива – первый в своем роде, который превращает семена кустарника из семейства ятрофа в экологически чистый источник энергии, он был объявлен в понедельник.
НАСА предлагает новый способ производства биотоплива: пресноводные водоросли в морской воде [4-17].
Новая концепция производства биологического топлива, которая представляет собой посадку в океане пресноводных водорослей, заключенных в больших гибких пластиковых трубах, на первый взгляд может показаться немного бредовой идеей. Однако, в действительности проект OMEGA, предложенный НАСА, более чем жизнеспособный и устойчивый.
Рис. 4–7 Система «Омега» для производства жидкого топлива.
Исследователи создали жидкое топливо, используя солнечную энергию[4-17].
Несмотря на все возрастающую популярность электрических транспортных средств, они все еще имеют много недостатков. И один из них – это длительное время зарядки литиево-ионных аккумуляторов, которыми оснащается большинство электромобилей, по сравнению со временем заправки жидким топливом бензобаков обычных машин, работающих на ДВС. Но недавно исследователи из Школы инженерных и прикладных наук Герни Самуэли от Калифорнийского университета разработали процесс, в котором жидкое топливо производится с использованием солнечной энергии.
В Норвегии будут получать топливо для автобусов и биоудобрение из пищевых отходов [4-17].
Начиная со следующего года, в Осло, столице Норвегии, начнет работу завод по переработке банановой кожуры, кофейной гущи и других пищевых отходов в «зеленое» топливо для городских автобусов. Кроме того, новая биогазовая установка будет поставлять фермерским хозяйствам биоудобрения, богатые питательными веществами.
Согласно сообщениям, завод сможет перерабатывать 50 000 тонн пищевых отходов в год, преобразовывая его в экологически чистое топливо для 135 муниципальных автобусов, а также в биоудобрение в объеме, достаточном для примерно 100 средних фермерских хозяйств. Процессы производства биогаза были разработаны в рамках долгосрочного исследовательского проекта при финансовой поддержке Исследовательского совета Норвегии.
Станут ли водоросли биотопливом будущего? [4-17].
Рис. 4–8 Плантации водорослей в кюветах.
Одним из направлений поиска более экологически чистых и безопасных альтернатив ископаемому топливу является разработка технологий производства биоэтанола. Этот продукт получается в основном из растительного сырья путем переработки сельскохозяйственных культур, под которые в последние годы отводится все больше ценных сельхозугодий. Экономисты и экологи утверждают, что если такая тенденция сохранится и дальше, то мир может столкнуться с нехваткой продуктов питания.
Marine Biology Field Station: самодостаточная электростанция, работающая на морских водорослях [4-17].
Дизайнер Bukowska Arkitekter из Стокгольма, Швеция, недавно предложила новый проект строительства оффшорной электростанции, выращивающей морские водоросли и вырабатывающей из них биотопливо для собственных нужд (Marine Biology Field Station). Впрочем, разработчик планирует использовать электростанцию не только в качестве объекта, производящего электроэнергию, но и в качестве демонстрационной площадки и учебного центра по возможностям применения альтернативной энергетики.
Микробы, обитающие в желудке человека, производят биотопливо из морских водорослей[4-17].
Рис. 4–9. Морские водоросли – сырье для производства биотоплива
Исследователи из Лаборатории биоархитектуры и университета Вашингтона в Сиэтле разработали новый технологический процесс, в котором генетически модифицированные микробы, обычно встречающиеся в желудке человека, расщепляют экзотические сахара в морских водорослях. Развитие этой технологии может означать революцию в производстве биотоплива, поскольку морские водоросли не нуждаются в удобрениях и особых условиях для своего роста, а также не содержат вещество лигнин, которое сегодня используется для выработки биомассы, но которое очень трудно расщепляется на простые химические вещества. Кроме того, недавно разработанный процесс превращения водорослей в биомассу происходит при относительно невысоких температурах, поэтому его с полным правом назвать энергоэффективным.
Ген, контролирующий цветение сорго, увеличивает производство биомассы из этого растения [4-17].
По данным исследования, недавно опубликованного в журнале Протоколы Национальной академии наук, гибрид сорго, который не цветет и наращивает в три раза большую массу стеблей и листьев, которые служат в качестве биомассы, будет способствовать дальнейшему развитию биоэнергетической промышленности. Группа ученых из техасского НИИ AgriLife Research обнаружила ген, который регулирует цветение сорго в соответствии с нуждами производства.
Рис. 4-10. Внешний вид гибрида Сорго, дающий втрое больше биомассы.
Thomson Airways планирует полет самолета на растительном масле[4-17].
Рис. 4-11. Самолет компании Thomson Airways, использующий биотопливо
Как утверждают ученые, очень скоро авиационная промышленность станет абсолютно безвредной для окружающей среды. Недалек день, когда вы будете лететь на самолете, который в качестве топлива использует растительное масло, и британский авиаперевозчик Thomson Airways может стать одним из первых в этой области. Компания планирует совершить первый полет своего авиалайнера, работающего на растительном масле, в Испанию.
Австралийский угольный завод сокращает выбросы углекислого газа[4-17].
Компания MBD Energy, являющаяся мировым лидером в области развития промышленного производства водорослей, заключила с компанией OriginOil договор о сотрудничестве в разработке и поставке уникальной системы по выращиванию водорослей для улавливания углекислого газа в атмосфере и последующему производству биотоплива. Выбрав направлением своей деятельности биологические способы борьбы со все возрастающим загрязнением воздуха, компании 24 мая этого года запустили пилотный проект новой системы на угольной электростанции в Таронге, Австралия.
Поиск испанскими учеными топлива будущего [4-17].
Почти 400 труб зеленого цвета высотой в восемь метров, заполненных миллионами микроскопических морских водорослей, расположены на равнине поблизости города Аликанте, Испания. Рядом работает цементный завод, выбросы углекислого газа которого улавливаются и транспортируются в трубопроводе в «зеленую нефтяную» фабрику. Именно так испанские ученые представляют себе получение топлива будущего: био-нефть, произведенная морскими водорослями, поглощающими углекислый газ от заводов.
Синтез изобутанола из целлюлозы растений[4-17].
Последствия энергетического кризиса все еще дают о себе знать, поэтому сегодня так важно дальнейшее развитие и реализация технологических инноваций в области альтернативных источников энергии, в частности в области производства биологического топлива. Исследователи из Научно-исследовательского центра биоэнергетики (BESC) от Минэнерго США, похоже, могут нам предоставить эффективное решение. Ученые разработали технологию получения изобутанола из целлюлозы растительного происхождения с помощью бактерий. Являясь спиртом более высокого качества, изобутанол имеет почти такую же теплоту сгорания, что и бензин, следовательно, он может рассматриваться как экологически чистая альтернатива бензину в двигателях внутреннего сгорания автомобилей.
Новый способ использования микробов для производства биотоплива[4-17].
Это почти революционный прорыв – группа американских исследователей из Университета Калифорнии в Лос-Анджелесе, успешно апробировала способ использования микробов для производства биотоплива, который в готовом виде будет стоить гораздо дешевле существующих аналогов. Это стало достижимо благодаря «обману» некоторых разновидностей микробов, которых ученые «заставили» потреблять белок для биологического преобразования этого белка в жир и другие вещества, которые затем могут быть очищены для производства биологического топлива.
«Скороварка» для производства биотоплива из водорослей[4-17].
Исследователи Мичиганского университета решили попробовать использоваться высокие температуры для улучшения производительности выработки биологического топлива на основе морских водорослей. Они недавно обнаружили, что такой процесс, как нагревание микроводорослей в анклаве, уменьшает длительность по времени, а также средства, необходимые для превращения слизистой субстанции в биотопливо. После соответствующего усовершенствования этот процесс, по мнению ученых, может привести, наконец, к появлению на рынке топлива на основе водорослей с низкой себестоимостью и низким уровнем выбросов – отличной альтернативы ископаемым видам топлива.
Sundrop Fuels использует интенсивное солнечное тепло для производства биотоплива[4-17].
Технология кажется ультра-фантастической: интенсивное солнечное тепло, которое может выпарить биомассу (дрова, отходы земледелия и т. д.) в синтетическое топливо. Однако процесс, разработанный компанией Sundrop Fuels, представляется вполне реальным, кроме того, эта технология поможет производить вдвое больше бензина или дизельного топлива по сравнению с обычными системами газификации биомассы.
Топливо из правительственной макулатуры [4-17].
Впервые в истории США на улицах Вашингтона можно увидеть автомобили, которые расходуют топливо, сделанное из использованных правительственных бумаг. Именно, компания Novozymes в партнерстве с компанией Fiberight разработала уникальную технологию производства биологического топлива из макулатуры, которая тонами выбрасывается после использования в начальственных кабинетах Белого дома и других правительственных учреждений.
Исследователи сконструировали табачные листья, которые смогут увеличить производство биотоплива[4-17].
Исследователи из лаборатории фундаментальной биотехнологии Университета Томаса Джефферсона обнаружили способ увеличить производство биотоплива, используя для этого сконструированные с помощью генной инженерии табачные листья, в которых увеличена доля масел. Их работа была опубликована в онлайновом журнале Plant Biotechnology Journal.
Глицерин: от мыла до главной составляющей в производстве биотоплива[4-17].
Как известно, топливоперерабатывающие предприятия производят огромное количество сырого глицерина в качестве побочного продукта. И хотя в настоящее время глицерин высшего сорта широко используется в косметической, пищевой и медицинской промышленности для производства товаров народного потребления, все же большие объемы сырого глицерина просто ликвидируются в виде отходов, а иногда даже нелегально.
Nanofarming-процесс предлагает более щадящий способ получения биотоплива из водорослей[4-17].
Последняя преграда к экономической конкурентоспособности биотоплива, похоже, вскоре падёт, благодаря новой разработке в области его выработки на основе нанотехнологий. Новая технология использует крошечные наночастицы, которые способны поглощать свободные жирные кислоты из живых микроводорослей. В настоящее время эта технология разрабатывается Национальной лабораторией Эймса Департамента энергетики США и Государственным университетом Айовы, в тесном сотрудничестве со специалистом в области производства биотоплива компанией Catilin, Inc.
Авиакомпания KLM Royal Dutch Airlines провела первый в Европе пассажирский рейс на смеси из реактивного и биологического топлива[4-17].
Промышленная авиация вносит значительный вклад в загрязнение окружающей среды посредством выбросов парниковых газов, но производители и управление по авиации принимают меры по решению этой проблемы. И вот недавно, для того, чтобы доказать ценность биотоплива в авиации, голландская авиакомпания KLM Royal Dutch Airlines завершила рейс Boeing 747 с 40 пассажирами на борту на топливе, которое производится из непищевых культур. Для одного из его четырех двигателей использовалась смесь из 50 процентов биокеросина и 50 процентов реактивного топлива. Самолет провел в воздухе над Нидерландами один час.
Бактерии превращают парниковые газы в топливо [4-17].
Команда исследователей из США недавно объявила о создании ими генетически модифицированных бактерий, которые, поглощая углекислый газ, вырабатывают изобультиральдегид. Его впоследствии можно использовать для производства изобутана.
Прорыв в производстве биотоплива: микробы вырабатывают топливо из воздуха[4-17].
Компания Joule Biotechnologies объявила о создании производства топлива непосредственно из богатого углекислым газом воздуха, используя сконструированные с помощью генной инженерии фотосинтетические микробы. Само преобразование углекислоты в топливо было названо компанией Helioculture-процессом.
Ученые из Гарварда создали батареи на основе почвенных бактерий[4-17].
Группа Бостонского колледжа создала аккумуляторы из микробных топливных элементов (microbial fuel cell, MFC), которые получают энергию из природных бактерий, содержащихся в почве. Если это изделие получит дальнейшее развитие, то можно надеяться, что 500 миллионов людей в странах Южной Африки, где нет доступа к электричеству, будут обеспечены энергией от экологически чистых батарей.
Camelina (рыжик) выбрано в качестве биотоплива для испытаний авиацией ВМС США[4-17].
Не так давно ВМС США объявили о планах протестировать несколько видов авиационного биотоплива в истребителе F/A-18. В то время они еще не решили, ни кто будет поставлять топливо, ни что будет использоваться в качестве исходного сырья – только то, что оно должно быть из непродовольственных культур. Теперь стало известно, что в качестве биотоплива для программы испытаний ВМС США выбрано топливо на основе Camelina* компании-производителя Sustainable Oils, Монтана.
Первый в мире автомобиль на энергии водорослей попытается пересечь США, используя 25 галлонов топлива[4-17].
В Сан-Франциско состоялось открытие первого в мире транспортного средства на топливе из водорослей, которое окрестили Algaeus. Гибридный автомобиль с модулем plugin, совмещающий в себе, подобно Prius, никель-металл-гидридные батареи и вилку для подзарядки от электрической сети, работает на зеленой нефти от компании Sapphire Energy, при этом никаких изменений в бензиновом двигателе не нужно. Проект оказался настолько эффективным, что Algaeus может проехать на 25 галлонах топлива от побережья до побережья!
Водоросли – биотопливо будущего [4-17].
Поиски экологических альтернатив ископаемым видам энергии прямой дорогой ведут к исследованию Мирового океана, поскольку именно он является громадным механизмом воспроизведения биологических ресурсов. Наибольшим потенциалом, в вопросе получения биологического топлива обладают морские водоросли, растущие повсеместно, выносящие любые экстремальные температуры и обладающие способностью быстрого размножения.
Российские ученые выращивают микроводоросли для производства биотоплива [4-17].
Новосибирские исследователи уверены, что на сегодняшний день микроводоросли являются самым перспективным сырьем для биотоплива.[4-19].
По мнению новосибирских биологов и химиков, микроводоросли – это самое перспективное на сегодняшний день сырье, которое наряду с растительными маслами, отходами переработки злаковых, тростником, опилками и многим другим составляют основу для производства альтернативного топлива.
Института катализа СО РАН применил технологии каталитических процессов, что позволяет получать биотопливо с более высокими характеристиками, которые могут использоваться в качестве добавок к традиционным моторным топливам. По своим характеристикам выращенные в Новосибирске микроводросли превосходят наземные растения. Они содержат до 80 % жиров от сухого веса.
НАСА помещает водоросли в пакеты со сточными водами в попытке получить авиатопливо. [4-17].
Космическое агентство выращивает водоросли для биотоплива в пластиковых пакетах, наполненных сточными водами, которые плавают в океане.
Процесс невероятно прост. Начинается всё с помещения водорослей в пластиковые пакеты, наполненные сточными водами; эти пакеты в истинно НАСАвском стиле имеют искусный акроним, ОМЕГА (или ОМЕВВ), что в переводе с английского означает «офшорные (морские) мембранные емкости для выращивания водорослей»
Пакеты ОМЕГА – это полупроводящие мембраны, которые НАСА разработало для вторичного использования сточных вод астронавтов в длительных космических миссиях. В этом случае мембраны позволяют выход пресной воды, но предотвращают просачивание соленой (морской) воды.
Затем водоросли в пакетах начинают поглощать питательные вещества сточных вод. Растения очищают воду и выделяют липиды – жирорастворимые молекулы, – которые будут после использованы в качестве топлива.
Система беспроигрышна, сообщил он. Даже в случае, если ОМЕГА-пакет протечет, соленая морская вода уничтожит водоросль, предотвратив распространение экспансионистских видов.
Пластиковые пакеты от НАСА предназначены существовать вплоть до 3-х лет… После этого они могут стать вторичным сырьем, как пластмассовая мульча, или могут быть раздроблены, и использоваться для улучшения качества почвы и сохранения влаги.
Продукции, получаемой из ОМЕГА, хватит, чтобы снабдить топливом авиационные нужды США – 21 биллион галлонов (68 млн. т углеводородов) в год. Чтобы сделать это, потребуется 10 миллионов акр (4.05 млн. га) площади океана.
Сложности.
Конечно, любая технология сталкивается с проблемами.
Специалистам НАСА необходимо найти пластмассу, способную выдержать дробящие волны и холодную температуру, не становясь слишком хрупкой для осмоса.
Qantas испытает биотопливо из морских водорослей[4-18].
Авиакомпания Qantas (Австралия) подписала контракт с американской энергетической компанией Solazyme о совместной работе по внедрению технологии производства биологического топлива из морских водорослей в Австралии в течение ближайших 12 месяцев, сообщает Flightglobal.com. Подобное соглашение Qantas также подписала с компанией Solena (США), которая занимается производством биотоплива из бытовых отходов. Подписанные соглашения являются частью программы авиакомпании Qantas, направленной на оценку возможности использования альтернативных видов топлива, а также на поиск партнеров в этой области. "Затраты и экологические последствия, связанные с традиционными видами реактивного топлива, приводят к необходимости коммерциализации альтернативных источников топлива. Qantas будет оценивать возможность использования каждой технологии на основании коммерческих и устойчивых критериев", – отметил руководитель Qantas Алан Джойс.
Литература
4-1. Siemens – Биотопливо – www.science-award.siemens.ru.
4-2. Панцхава Е.С., Березин И.В., Техническая биоэнергетика, Биотехнология, 1986, № 3, с. 8–15.
4-3. O., Rosillo-Calle F., 10 Biomass (Other then Wood)// Survey of Energy Resources., 1998, 18th Edition, p. 227–257.
4-4. Курс обучения DIERET – Энергия Биомассы – Ecomuseum.kz www.ecomuseum.kz.
4–5. Т.А. Железная, Г.Г. Гелетуха., Обзор современных технологий газификации биомассы. Технологии газификации биомассы, 2008, www.escoecosys.narod.ru.
4–6. Биотопливо – альтернативный вид топлива, culibin777.livejournal.com.
4-7.Е.С. Панцхава и др., Биогазовые технологии., М., 2008, 217 стр.
4-8. The Future of Ethanol: Cellulosic.,www.web.extension.illinois.edu.
4-9. Девис А., Шуберт Р., Альтернативные природные источники энергии в строительном проектировании// М., Стройиздат, 1983, 189 с.
4-10.Международная биоэнергетика, № 3 (20), 2011, стр. 32–33.
4-11. Lufthansa начала экспериментальные полеты на биотопли-Be.,www. media.lufthansa.com.
4-12. A-10 Thunderbolt II of US Air Force flies on biofuel., www.commodityonline.com.
4-13. Королевские ВВС Нидерландов продемонстрировали вертолет Apache на биотопливе., www.cheburek.net.
4-14. AVIATION IMAGES Photo Gallery by Rob Finlayson at pbase.com.,
www.pbase.com.
4-15. Creating Jet Fuel from Biomass Waste – OilPrice.com, Alternative Energy, www.oilprice.com.
4-16. Я. М. Паушкин, Г. С. Головин, А. Л. Лапидус, А. Ю. Крылова, Е. Г. Горлов, В. С. Ковач., Получение моторных топлив из газов газификации растительной, Институт горючих ископаемых.,
www.promeco.h1.ru.
4-17. Биологическое топливо – Cheburek.,net.,www.cheburek.net.
4-18. Qantas испытает биотопливо из морских водорослей., www.air-stream.net.
4-19. Российские ученые выращивают микроводоросли для…www.smartgrid.ru.