Получение энергии из водорослей на сегодняшний день считается «Святым Граалем» среди всех источников получения альтернативной энергии в мире. Водоросли являются третьим поколением сырья для производства биотоплива и представляют собой одну из самых интересных возможностей решения будущих энергетических проблем, в особенности транспортного топлива. В последние годы эта отрасль (Aglae power) будет быстро развивается. [8–1].
В США полагают, что к 2014 году доля биотоплива в общем потреблении может достигнуть 3 % (123 млрд литров). [8–1]
Водоросли являются первичными продуцентами органического вещества в водах Мирового океана и пресных водоемов суши, причем годовая продуктивность морских водорослей сопоставима с продуктивностью всей наземной растительности, включая сельскохозяйственные угодья. В мире насчитывается 35–40 тыс. видов водорослей.
Водоросли – постоянно возобновляемый ресурс, источник получения пищевого и кормового белка и других ценных соединений (углеводов, липидов, витаминов), поэтому во всем мире внимание специалистов приковано к проблеме искусственного разведения макроводорослей и промышленного культивирования микроскопических) Водоросли в зависимости от условий культивирования могут содержать: белков от 9 до 88 %, углеводов – от 6 до 37 % и жиров – от 4 до 85 %.[8–2].
Водоросли, и микроскопические в частности, характеризуются наиболее высоким КПД усвоения световой энергии по сравнению с другими фотосинтезирующими организмами… Продуктивность водорослей, особенно микроскопических, приближается к потенциально возможной. Так, у хлореллы в закрытых полностью автоматизированных опытных установках при искусственном освещении она составляет 100–140 г сухого вещества на 1 м2 в сутки. Это соответствует 1–1,4 т/га (в сухой массе) в сутки или 360–500 т/га в год. Средняя продуктивность микроводорослей при их массовом культивировании в установках открытого типа при естественном освещении находится в пределах 14–35 г/м2 (в сухой массе) в сутки, максимальная достигает 60 г/м2 в сутки. Если исходить из средней суточной продуктивности 20 г/м2 и продолжительности вегетационного периода 6 месяцев, среднегодовая продуктивность установок этого типа составит 72 т/га (в сухой массе) в год. Практически такой показатель (50–80 т/га в год) достигнут во многих странах в открытых культиваторах разного типа. Культивирование видов рода Spirulina позволяет получать 128 т/га белка в год. Продуктивность культуры микроводорослей на порядок выше по сравнению с продуктивностью пшеничного поля. [8–2].
Исследователям Аликантского университета в Испании удалось резко ускорить рост водорослей… Если в открытом море в естественной среде на каждый кубометр воды приходится до 300 экземпляров водорослей, каждая из которых наполовину состоит из жира, то исследователи получили 200 млн. экземпляров на тот же кубометр воды. Микроводоросли растут в пластиковом цилиндре диаметром в 70 см и длиной в 3 м. Это и есть водорослевая ферма. [8–3].
Один раз в день содержимое цилиндра подвергается центрифугированию. Остаток представляет собой практически стопроцентное биотопливо. Насыщенная жирами часть этой массы преобразуется в биодизель. Один килограмм пасты из водорослей имеет энергетическую ценность в 5700 килокалорий. В сосуде объемом всего в 2 куб. м можно получить 6 кг биомассы. Причем затраты энергии на ее получение значительно меньше, чем при выращивании сои или подсолнечника, а конечный результат намного выше.
Ученые планируют не только изготовлять из водорослей горючее, но и снижать уровень двуокиси углерода, который образуется при производстве электроэнергии с использованием органических видов топлива. Планируется выбросы СО2 и угарный газ направлять в биореакторы, наполненные водорослями. Эти газы действуют на водоросли как удобрения, способствуя их ускоренному размножению.[8–3]. Какой же вид водорослей лучше всего подходит для энергетических целей? Исследования в Регенсбургском университете в Германии показали, что одним из таких видов является Chlorella, которая способна отфильтровывать до 50 % СО2. Однако фотосинтез происходит только при постоянном освещении. Поэтому реальнее говорить о 20 % СО2, поглощённого из выбросов с помощью водорослей. Так, средней величины ТЭС могла бы в год производить до 20 тыс. тонн водорослей. [8–3].
8.1. Золотая" солярка из водорослей [8–4]
Различные источники утверждают о высокой рентабельности производства по получению биотоплива из микроводорослей, в частности самой перспективной считается «Botryococcus braunii». Действительно микроводоросли это самые быстрорастущие организмы на Земле, некоторые виды могут содержать до 80 % липидов. Это факт. Но, 80 % липидов могут содержать далеко не все виды микроводорослей. В нормальном состоянии содержание липидов составляет 5 – 30 % и только в состоянии стресса микроводорсли увеличивают в своем организме содержание жира. Для получения 1 килограмма сухого вещества микроводоросли растущие организмы необходимо снабдить 10 % чистого азота или в пересчете на 100 г азота или 500 – 600 грамм азотосодержащих минеральных удобрений. Так же организм водорослей состоит из углерода (он является основной составляющей) и для получения того же 1 килограмма сухого вещества необходимо 50 % углерода или в пересчете на СО2 примерно 2,4 килограмма. Но это еще не основная часть статьи расходов. На 1 м2 освещаемой поверхности можно вырастить примерно 8 грамм водорослей в перерасчете на сухой вес и это при интенсивности освещения 150 Вт на м2 18 – 20 часов.
8.2. Биотопливо и биомассы
Израильские компании также активно работают над производством более экологичного топлива, получаемого из водорослей и других видов растений.
Компания TransAlgae [8–5].
В научно-исследовательском центре Института им. Вайцмана компания Trans Algae разрабатывает и налаживает серийный выпуск генетически модифицированных водорослей, которые могут быть использованы как для производства энергии, так и в качестве корма для животных. Компания, основанная в 2008 году, утверждает, что ее технология “отделит качество жизни от зависимости от импорта нефти и от выбросов углекислого газа”.[8–5].
Компания вырастила первое поколение генетически модифицированных водорослей и основала исследовательский объект на генераторной установке, работающей на природном газе. Так как водоросли потребляют углекислый газ в объеме, в два раза превышающем их вес, любой углекислый газ, высвобождаемый при последующем сгорании выработанного из водорослей биотоплива, компенсируется за счет углекислого газа, использованного при выращивании водорослей. Таким образом, объясняет компания, скромный завод по производству водорослей может внести большой вклад в борьбу с глобальным потеплением. TransAlgae занимается в основном разведением водорослей, произрастающих в морской воде, хотя их разведение возможно и на непахотной земле рядом с морем.
Процесс добычи биотоплива порождает также еще один ценный биопродукт – биомассу, которую можно продавать в качестве концентрата с высоким содержанием белка для корма животных. TransAlgae предполагает, что ценность этого корма может быть достаточно велика, чтобы компенсировать львиную долю затрат на производство водорослей, что сделает биотопливо, добываемое из них, конкурентоспособным по своей стоимости скорее, нежели сейчас ожидается.[8–6].
Суперсовременная гидрологическая система компании Seambiotic.
Основанная в 2003 году и расположенная в Ашкелоне компания Seambiotic изначально занималась производством и продажей продукции из жирной кислоты омега-3, добываемой из морских микроводорослей, но скоро расширила сферу своей деятельности, включив в нее также производство продуктов биотоплива. Компания утверждает, что была первой в мире, сумевшей добыть галлоны биодизеля и биоэтанола из морских микроводорослей, культивируемых с использованием дымовых газов из труб.
Рис. 8–1. Производство водорослей.[8–7].
Seambiotic провела пятилетние опытные исследования в Ашкелоне, на электростанции израильской Электрической компании. В рамках этих испытаний углекислый газ из дымовых труб выкачивался прямо в открытые пруды, построенный компанией. В сотрудничестве с крупнейшим в Китае производителем электроэнергии, компания строит сейчас крупномасштабное предприятие для коммерческого выращивания водорослей в Яньтае, Китай.[8–7].
Компания также работает совместно с Rosetta Green над разработкой штаммов водорослей с улучшенными генетическими характеристиками для производства биотоплива. Кроме того, американский филиал компании Seambiotic сотрудничает с исследовательским центром “Гленн” при НАСА над оптимизацией процесса роста микроводорослей, которые будут использоваться в качестве сырья для авиационного биотоплива.
Компания Algaenesis [8–7].
Головной офис компании расположен в Иерусалиме. Algaenesis утверждает, что компания разработала технологические инновации, представляющие “смену парадигмы” в сфере разведения микроводорослей и серьезно снижающие стоимость их производства. Речь идет, в частности, о распознавании оптимальной интенсивности света, способствующей максимальному росту водорослей, и патентованной системе “распространения света”, способной накапливать весь доступный солнечный свет в дневное время с целью обеспечения оптимальной яркости. Изначально компания была ориентирована на рынок пищевых добавок с Омега-3. [8–7].
8.3. Альтернативная энергетика – биотопливо
Сегодня человечество является свидетелем новой революции в области получения из непищевого возобновляемого сырья топлив, практически не отличающихся по свойствам от традиционных и способных их заменить. Такое топливо не потребует замены или переделки двигателей, приспособленных для работы на топливе нефтяного происхождения. В качестве такого сырья выбраны водоросли. От растений, произрастающих на твердом грунте, они отличаются рядом преимуществ – высокой урожайностью, способностью развиваться в воде, а не на пахотной земле. [8–8] [8–9].
Сравнение энергонасыщенности масличных культур показывает, что удельная энергетическая ценность водорослей с 50 %-ным содержанием липидов (930 МВт» ч/га) в 15,5 раз больше, чем у самой энергонасыщенной наземной масличной культуры – китайского сального дерева (60 МВт-ч/га).
Существуют водоросли, в которых содержание триглицеридов, основы растительного масла, более половины массы. Ни одно из существующих наземных растений не в состоянии конкурировать с водорослями по эффективности фотосинтеза, лежащего в основе урожайности и по содержанию масел и, соответственно энергии в них.
Потенциал производства масла из различных культур характеризуется следующими показателями: «производительность» кукурузы составляет 172 л на гектар в год; пальмового масла 5950 л/гектар, а типичных «энергетических» водорослей – до 95000 л/га при выращивании в открытых водоемах.[8–8].
При замене дизельного топлива нефтяного на дизельное топливо, произведенное из хлопкового масла, нужно засеять всю поверхность Земли, включая водные пространства и полюса, из сои и рапса – более четверти, из пальмового масла – шестнадцатую часть, из водорослей – весьма незначительную площадь.
CO2 был и остается самым масштабным отходом промышленности. Защита окружающей среды слишком дорого обходится промышленному потенциалу. Водоросли в производстве энергоносителей превращают углекислый газ из проблемы в фактор прибыли. CO2 становится важнейшим ресурсом, который можно поставить на промышленную основу. Из углекислоты с фотосинтетической эффективностью 510 % при минимальных затратах воды, на земле, непригодной для использования в сельскохозяйственных целях, можно получить либо биотопливо, либо сырье для химической промышленности. [8–8].
Рис. 8–2. США. Установка, на которой их ученые исследуют возможности производства биотоплива из водорослей. [8-10].
10 преимуществ водорослей:
1. Непищевая биомасса – не представляет угрозы продовольственной безопасности. 2. Растут в 20–30 раз быстрее наземных растений (некоторые виды могут удваивать свою массу несколько раз в сутки). 3. Производят в 15-100 раз больше масла с гектара, чем альтернативные рапс, пальмовое масло, сало и др. 4. Отсутствие твердой оболочки и, практически лигнина, делает их переработку в жидкие топлива более простой и эффективной. 5. Производство и использование биотоплива не требует изменения российского законодательства, как в случае с этаном. 6. Растут в пресной, соленой воде или в промышленных стоках, где используется для их очистки. 7. Можно выращивать промышленно в биореакторах или фотореакторах с искусственным освещением, либо в открытых резервуарах на некультивируемых почвах, включая пустыни. 8. Фотореакторы встраиваются в технологические линии уже существующих промышленных предприятий (ТЭЦ, НХ, цементные заводы). 9. Уменьшают эмиссию углекислого газа (поглощают до 90 % CO2 с выделением кислорода). 10. Являются источниками масел, протеинов, углеводородов.[8–8].
При получении биоэтанола из биосахаридов (от крахмала до лигноцеллюлозного сырья) всегда образуется углекислота в количестве (по массе), равном количеству полученного спирта. Если встроить в схему биореактор с водорослями, можно дополнительно получать биотоплива, максимально оптимизировав затраты, то же при сжигании угля и других процессов из высших жирных кислот благодаря водорослям можно получать продукты, которые на сегодняшний день производятся в нефтехимии ценой огромных затрат. Длинноцепочные линейные молекулы могут быть превращены в a-спирты, а-олефины, полиакрилаты и первичные амины – продукты с высокой добавленной стоимостью.
Актуальность получения моторных топлив из биомассы у большинства стран не вызывает сомнений. Альтернативная энергетика стала одним из первых приоритетов новой администрации США. Несмотря на глубокий экономический кризис, планируется 150 млрд. долларов в течение 10 лет на развитие альтернативной энергетики, в которой преобладающее место занимает биоэнергетика, с целью использования 20 % моторного топлива из биомассы в общем топливном балансе страны к 2017 году. Приняты и реализуются национальные (Бразилия, США, Китай, Мексика и др.) и региональных (Европейское сообщество) программ производства и использования биотоплива с целью замены на него традиционного углеводородного топлива. Лавинообразно растет количество компаний и организаций, работающих в области переработки водорослей в энергоносители (единицы в 2007 г. и более 200 сейчас). [8–8].
Россия значительно отстаем от Запада в разработке современных инновационных технологий переработки биомассы наземного происхождения. Пока это отставание не сказывается на возможностях быстрой разработки технологий производства биотоплив из водорослей. Новые технологии просты в аппаратурном оформлении и представляют собой ряд известных и отработанных в других отраслях химической и нефтехимической индустрии методов.
В России сложилась своя научная школа предлагающая технологии с лучшими показателями в сравнении с зарубежными аналогами.
Технологический прогресс производства моторных топлив из водорослей практически безотходен. Сухие отходы биомассы сохраняют все витамины и ценные вещества, поэтому могут быть использованы как подкормка в рыбоводческих и животноводческих хозяйствах. Кроме того, возможно их превращение в еще один вид энергоносителей – топливные брикеты.
При наличии финансирования технологии, доведенные до промышленного применения, могут принести в течение 2 – 2,5 лет значительный экономический эффект. Московская ТЭЦ-21 – вырабатывает в год 9,1 млрд. кВт-ч электроэнергии, полное использование выбросов CO2 для выращивания водорослей позволит произвести жидкие энергоносители суммарной энергетической ценностью от 8 до 11,4 млрд. кВт-ч/год.
Таким образом, использование моторных топлив из водорослей может внести значительный, сопоставимый с производством электроэнергии вклад. Иными словами речь идет не об использовании смеси из «зеленого» и нефтяного топлива, а производстве точно таких же топлив, но из другого, возобновляемого сырья.[8–8].
Существует серьезная политическая и финансовая поддержка нового направления, в особенности в США, но возможно, что ведущие нефтяные и энергогенерирующие компании Shell, BP, Chevron и другие уделяют серьезное внимание новому направлению, инвестируют в его развитие, осознавая неизбежность возникновения нового сектора рынка, так как они не хотят терять контроль над рынком моторных топлив.
Согласно Акту энергетической независимости и безопасности США планируют к 2022 году достичь производства биотоплива непищевого происхождения в объеме примерно 80 млн. т/год. Принимая во внимание тенденцию роста доли биотоплив из водорослей можно полагать, что к 2022 году оно перешагнет порог 50 %, что соответствует 40 млн. т/год и составляет 43 % нынешнего потребления бензинов и дизельных топлив в России (примерно 92 млн. т/год, из них 32 млн. т/год бензина и 60 млн. т/год – дизельного топлива). [8–8].
8.4. Эйхорния
Эйхорния – самое уникальное водное тропическое растение, акклиматизированное в средних широтах с выживанием до нулевой температуры воды. Уникальность: сверхбыстрое вегетационное размножение и способность очищать воду почти от любых химических и бактериологических загрязнений. Это плавающее водное растение, надводная часть которого состоит из листьев и цветка (второе название – водный гиацинт). В воде находятся нитевидные корни, на которых находятся множество полезных микроорганизмов, в том числе бактерии метановой группы.[8-11].
Произрастает эйхорния в естественных условиях в странах с тропическим и субтропическим климатом. При создании благоприятных условий в интервале температур 16 – 32 °C растение может вегетировать в любом регионе, включая северные районы. Непременным условием вегетации растения является вода, загрязненная различными промышленными и бытовыми стоками и отходами, которые играют роль питательной среды для эйхорнии. В этих условиях растение многократно воспроизводит себя. Зеленая масса эйхорнии используется для производства биогаза, в состав которого входит до 75 % метана. Так же из эйхорнии можно производить удобрения, корм для животных и птиц, бумагу. В одной тонне эйхорнии содержится до 60 кг калия, до 21 кг азота, до 17 кг фосфора, до 26 кг протеина с высоким содержанием незаменимых аминокислот. [8-11].
Проводимые работы по использованию эйхорнии в целях очистки загрязненных вод дали результат ее прироста до 10–15 кг в сутки с одного квадратного метра поверхности биопруда, т. е. за сутки биопруд площадью 1000 м2 способен производить до 15 тонн биомассы эйхорнии, причем трудоемкость обслуживания биопруда является минимальной. [8-11].
Замечательный результат эйхорния дает, перерабатывая различные органические отходы, каковыми могут быть пищевые отходы, отходы птицефабрик и животноводческих ферм, канализационные стоки, содержимое очистных сооружений и др. Расщепляя эту «пищу» эйхорния в сочетании с отходами способна производить из одной тонны биомассы до 800 м3 биогаза. [8-11].
Эйхорния обладает уникальным свойством – поразительно высокой скоростью вегетативного размножения. Одна розетка за 50 суток образовывает до 1 тыс. отпрысков, каждый из которых, в свою очередь, вновь начинает делиться. За 3 месяца одно растение превращалось в миллион, а за полгода – в триллион экземпляров! [8-11].
Из эйхорнии можно получать энергоносители, кормовые добавки и удобрения, а также при помощи специальных технологий (на основе свойств эйхорнии) имеется возможность значительно улучшить экологическую обстановку в проблемных областях нашей страны, позволят утилизировать практически все вредоносные жидкие отходы и газообразные выбросы промышленности, затратив на это гораздо меньше средств, чем при использовании ныне существующих. [8-11].
8.4.1. Получение биогаза и электроэнергии
В природе нет растения, способного конкурировать по биопродуктивности с этим древнейшим представителем высшей водной растительности. Эта биомасса может быть использована для получения различных видов биотоплива и бионефти. Перспективным вариантом переработки эйхорнии является получение из неё биогаза, а из биогаза электроэнергии и тепла. Попутно можно получить высокоценное удобрение. Энергия, заключенная в 28 куб. м биогаза, эквивалентна энергии 16,8 куб. м природного газа, 20,8 л нефти или 18,4 л дизельного топлива. [8-11].
Рис. 8–3. Схематическое изображение технологии производства биогаза и тепловой и электрической энергии их Эйхорнии.
Переброженная масса – это биоудобрения, готовые к использованию. Ниже приведены некоторые показатели:
Площадь занимаемая одним растением – 0,015 кв. м,
Вес одного растения – 0,66 кг,
Количествово биомассы с 1000 кв. м – 10 000 кг в сутки,
Количествово биогаза из 1 т биомассы = 500 куб. м,
Из 1 куб. м биогаза при сгорании получается 2 кВт электроэнергии и 2 кВт тепла,
Объём биогаза 10 т х 500 куб. м = 5000 куб. м,
Количество электроэнергии в сутки – 10000 квт и 10000 квт тепла,
Количество электроэнергии в час – 10000/ 24 часа = 417 квт/час [819].
Рис. 8–4. Использование Эйхорнии для очистки сточных вод.
8.4.2. Получение искусственной нефти из Эйхорнии
Ещё один способ получения энергии из биомассы эйхорнии – это синтез искусственной нефти. Если не вдаваться в подробности, в основе синтеза искусственной нефти – простой нагрев биомассы до 500 градусов без доступа кислорода, перегонка и конденсация полученной смеси. Синтетическая нефть по виду получается такой же, как обычная, хотя существенно отличается по химическому составу. Но куда важнее, что технически из этой искусственной, или как ещё говорят, бионефти можно вырабатывать практически все продукты, которые сегодня делают из нефти природной – различные виды моторного топлива и химикаты. [11].
Кроме выработки электрической и тепловой энергии, неотвратимым побочным, но немаловажным для сельскохозяйственного производства, результатом утилизации отходов, является:– получение биоудобрений и биокормов;
В юго-восточной Азии эйхорния служит пищевой добавкой в рационе домашней скотины. В эйхорнии очень высоко содержание протеина, каротина, витаминов А, В, С, Е. Эйхорния дает зеленую массу, в 1 т которой содержится 60 кг К, 20 кг N, 17 кг Р, 28 кг белка. – корм из эйхорнии способствует большему усвоению корма животными и птицами;
– 10 %-ная добавка зеленого корма эйхорнии к основному корму свиней способствует повышению усвоения ими основного рациона;
– сокращение нагрузки на пастбища (на 40–50 %) при выращивании эйхорнии рядом.[11]
Эйхорния совместно с хлореллой являются прекрасным полноценным кормом для промышленного животноводства. Можно выращивать животных в стойловом варианте. 1000 кв. м эйхорнии позволяют содержать 2000 овец. Исследовали растения одно-, двух– и трехмесячного возраста с целью опредления их качества в виде кормов травяных по ГОСТ 18691-88. Было установлено содержание сырого протеина от 30 до 40 %, сырой клетчатки от 8,3 до 11,4 %, что соответствует нормам 1-го класса. Растения при проверке на токсичность показали содержание ниже ПДК, что позволяет сделать вывод о возможности применения растений после соответствующей обработки в качестве корма животным, рыбам и птицам при разработке рациона их питания.
Таблица.8-1
Результаты анализов по определению качества эйхорнии
*исследования проводились на образцах, предварительно высушенных до сухого состояния – результаты анализов даны на сухое вещество.[8-11].
Эйхорния хорошо сушится, гранулируется, силосуется. В сухой массе содержится до 39 % сырого протеина, 2,7 % жира, до 183 мг/кг каротина, весь набор аминокислот и микроэлементов (кальций – 1,6–1,8 %, сера, молибден, медь, цинк, марганец, железо и др.), около 10 % пектина. [8-11].
Эйхорния еще в 1884 году был введена в культуру во Флориде. Зоны интродукции (показаны зеленым цветом), начиная с конца XIX века, распространились в южной части Северной Америки и Азии, Индонезии и Австралии, в Южной Америке и Африке…
Рис. 8–5. Зоны интродукции Эйхорнии на земном шаре.
Водоросли – это экономически эффективный способ получения горючего и разнообразного химического сырья из загрязняющих атмосферу планеты выбросов тепловых электростанций и других производств, который успешно испытывают в США.[8-12]. (Корпорация GreenFuel Technologies из Массачусетса разработала Технологию Emissions-to-Biofuels – уникальную в своей способности снижать выбросы углекислого газа с пользой в виде выработки нового топлива.[8-12].
В опытной промышленной установке, работающей в Аризоне, выброс тепловой станции превращается в биодизельное горючее.[8-12].
Южноафриканская компания De Beers Fuel Limited получила от GreenFuel Te-chnologies лицензию на технологию Emis-sions-to-Biofuels.. Сейчас там занимаются синтезом горючего из растительных масел. «…Соя даёт 48 галлонов сырья (масла) с одного акра, канола -140 галлонов, а водоросли 10 тысяч галлонов», – отмечают специалисты De Beers Fuel.
Изобрёл этот метод и основал GreenFuel Technologies Исаак Берзин (Isaac Berzin), учёный из Массачусетского технологического института (Massachusetts Institute of Technology). Он организовал эксперимент с морскими водорослями на Международной космической станции и тогда задумался об их удивительной способности к быстрому размножению с минимумом требований к среде (например, им не нужна особо чистая вода).
В 2005-м предприимчивый учёный договорился с властями Аризоны и запустил опытную станцию для выращивания водорослей. С тех пор он экспериментирует с необычными зелёными колбами, забирающими часть выбросов местной электростанции. Прошлой осенью здесь начали получать пригодные, в принципе, для продажи биодизель и этанол. Хотя пока система работает как эксперимент.
Рис. 8–6. Схема технологического цикла Emissions-to-Biofuels: 1 – дымовые газы тепловой электростанции, 2 – биореактор с водорослями, 3 – вентилятор, 4 – выход кислорода и азота, 5 – первичная сушка (стрелка, идущая обратно в реактор – рециклинг воды), 6 – биомасса, 7 – этанол, метанол, 8 – биодизель, 9 – протеиновый концентрат, 10 – другие продукты, 11 – автомобильное топливо (вроде E85). Стрелка, идущая от спиртов и биодизеля к изображению тепловой станции, означает, что их можно не только продавать автомобилистам, но использовать для выработки электричества тут же, на месте производства (иллюстрация GreenFuel Technologies).
Кэри Баллок (Cary Bullock), директор GreenFuel Technologies, утверждает, что в случае создания массовой промышленной установки такого типа можно будет получать по 200 тонн водорослей с акра свободной площади в год. Балок добавляет, что коммерческое производство продукции по фирменной технологии начнётся в 2008 году: в Аризоне, а также у партнёров компании – в Австралии и Южной Африке. Проявляют интерес к американской технологии и в Европе.
При этом массачусетские экспериментаторы утверждают, что капитальные затраты на создание такой установки низки, потребности оборудования в электричестве также невелики, и установка по выращиванию водорослей никак не влияет на работу тепловой электростанции. Мол, окупаться такая коммерческая система должна быстро.
Компании удалось решить ряд проблем, с которыми столкнулись в других лабораториях и институтах при построении сходных по принципу действия систем. Тонны водорослей отдают топливо в обмен на дым заводской трубы. [8-12]. Во многих странах учёные ведут работы по фотобиореакторам на основе водорослей.
Далее этот зелёный состав пропускают через первичную сушилку, которая отделяет воду и направляет её обратно в биореактор. Полученный высококонцентрированный раствор водорослей (здесь их концентрация в 10–30 раз выше, чем в реакторе) поступает в следующую секцию установки.
В данном случае – это система, производящая из биомассы дизельное топливо. [8-12].
Американские новаторы заявляют, что их метод позволит получать и спирты, и метан, и биодизель, и водород с синтез-газом, и просто – брикеты твёрдой биомассы для разнообразного дальнейшего использования.
Если опыты с биотопливом увенчаются успехом, это радикально изменит не только экономику, а картину мира в целом.
Синтия Уорнер удивила многих, уйдя с высокого поста в нефтяном гиганте BP в маленькую компанию, производящую биотопливо из морских водорослей. Она считает, что это «ключ к будущему земли». [8-13].
Мир явно хочет соскочить с «нефтяной иглы» и делает шаги в этом направлении. Никто не знает, когда эксперименты с биотопливом увенчаются успехом, и увенчаются ли вообще – с точки зрения экономической целесообразности. Пока биогорючее обходится дороже, чем горючее из нефти. Цель компании Sapphire Energy – производство биотоплива из морских водорослей в промышленных объемах, чтобы его покупали нефтеперерабатывающие заводы. С мелкими партиями сырья НПЗ не работают, нецелесообразно. Если калифорнийской компании удастся выйти на такие обороты, а это планируется уже в 20112012 годах – это будет прорыв, и «жизнь после нефти» перестанет быть. [8-13]
8.5. Биотопливо из водорослей – решение найдено
Солнце, ветер и геотермальные воды могут дать электричество, но для того, чтобы перемещаться в пространстве, требуется высокоэнергетичное жидкое топливо. [8-13]
«Углеводороды необходимы также в химической промышленности, и в производстве многих строительных материалов, – говорит Уорнер. – Земля быстро стала бы голой, если бы нам пришлось вернуться к строительству из дерева.
Одноклеточный организм, производящий фотосинтез, образует крохотный жировой пузырек, который позволяет ему плавать на поверхности воды. Доисторические предки этого организма были источником образования углеводородов, и по своей природе он ближе к нефти, чем зерновые, пальмы или растения рода ятрофа, из масла которых пытаются делать биодизельное топливо.[8-13].
В мае 2008 года в лаборатории Sapphire впервые в истории получили из возобновляемых ресурсов бензин с октановым числом 91.
В сентябре 2010 года компания, получив грант Министерства энергетики ($50 млн.) и кредит под гарантии Министерства сельского хозяйства ($54,5 млн.) начала строительство на 300 акрах опытного завода в Нью-Мексико.
Завод должен производить несколько сотен баррелей нефти в день. Если все будет хорошо, Sapphire продолжит коммерческое развитие проекта, чтобы к 2018 году производить уже десятки тысяч баррелей в день.
Срок жизни водорослей долог, а число их ошеломляюще велико.
Получение и технология биотоплива из водорослей привлекает ученых, предпринимателей и таких гигантов «нефтянки», как Exxon Mobil. Компании:
Sapphire
Место: Ла Хойя, Калифорния; фабрика в Нью-Мексико
Метод: выращивание морских водорослей в открытых водоемах, напоминающих плавательные бассейны
Algenol
Место: Бонита-Спрингс, Флорида
Достижения: в мае 2010 года создано совместное предприятие с Valero – одним из крупнейших переработчиков нефти в США; партнерство с Dow Chemical
Метод: выращивание водорослей в фотобиореакторах из дешевого пластика, напоминающих бутылки с содовой. Аналитик Марк Бюнгер называет эту технологию «очень осмысленным подходом»
Solazyme
Место: Сан-Франциско, Калифорния.
Достижения: компания № 1 в биоэнергетике в 2009–2010 годах, по версии специализированного. Biofuel’s Digest. Уже продает тысячи галлонов искусственного биотоплива военно-морским силам США
Метод: кормление сахаром водорослей, которые растут в металлических фотобиореакторах, похожих на огромные чаны, в которых варят пиво.
Synthetic Gemonics
Место: Ла Хойя, Калифорния
Достижения: в июле 2009 года один из лидеров мировой «нефтянки» Exxon Mobil объявил, что инвестирует $600 млн. в создание генетической карты водорослей. Эта работа проводится в рамках проекта «Геном человека» Крейга Вентера
Метод: исследования, которые должны дать ответ на вопрос, в чем эффективнее выращивать водоросли – в закрытых фотобиореакторах или в открытых водоемах.
Сине-зеленые водоросли могут стать настоящим золотым клондайком. Зловонные и уродливые водоросли несложно преобразовать в удобрения и биотопливо. (2010 г.)
8.6. Качественный газ из Днепра – для нас!
Качественный газ из Днепра – для нас! [8-14].
Из зловонных водорослей можно получить очень качественный энергетический продукт, калорийный и без вредных примесей – ну просто идеальное экологическое биотопливо – содержание метана – 85
Газовая установка в Кременчуге.
Технология КГУ им. Остроградского (Украина) по переработке сине-зеленых водорослей в биогаз.
1. Притопленная платформа (наподобие баржи) плывет по Днепру и откачивает верхний слой воды вместе с синезелеными водорослями. Буксир тянет платформу до станции переработки.
2. Жидкость попадает в камеру обогащения, где отфильтровывают воду и раствор сине-зеленых становится еще более насыщенным.
3. Концентрированный раствор сине-зеленых водорослей помещают в специальный бункер, где под воздействием солнечного тепла происходит процесс брожения, в результате которого образуется биогаз.
4. Когда газ собран, остатки водорослей используют как удобрение.[8-14].
Наиболее важной культурой для получения альтернативной энергии, выращиваемой на Востоке (Филиппины), является красная водоросль Eucheuma. В настоящее время на Филиппинах выращивается более 10000 т сухой массы в год по рыночной стоимости 250–700 долл. за тонну. (2010 г.) [8-15].
Рис. 8–7. водоросль Eucheuma [8-15].
Eucheuma культивируется в прибрежных лагунах и других доступных мелководьях, а также защищенных прибрежных районах и в прудах с поликультурой ханос. Размножение осуществляется с помощью черенков зрелых растений, которые в процессе развития удерживаются на месте с помощью различных трубопроводов, сетей и клетей.
В Северной Японии выращивают Undaria pinnatifida. Вначале для этого использовались поплавки, на которые оседали молодые спорофиты. В настоящее время молодые спорофиты получают в лабораториях, а затем их высаживают на плоты или горизонтальные трубы. Один плот размером 36,6 х 1,5 м может удерживать до 112,5 кг сухой массы Undaria в год. Аналогичный способ выращивания Undaria начали применять в Северном Китае.
На Тайване в солоноватых прудах в качестве поликультуры с крабами, креветками и ханосом выращивают Gracilaria, Gelidium и Monostroma, наиболее важной из которых является Gracilaria. В Японии Monostroma выращивают и поставляют на рынок совместно с Porphyra. Gloiopeltis в Японии выращивают на размещенных в воде валунах или бетонных блоках, к твердой поверхности которых прикрепляются спорофиты. Gaulerpa выращивают в Японии в прудах поликультуры в основном таким же образом, как и Gracilaria на Тайване.
Внимание заслуживают два необычных эксперимента, один из которых был выполнен советскими учеными. Цель эксперимента состояла в выращивании крупной бурой водоросли Phyllogigas с двустворчатыми моллюсками в районе Антарктики [8-15].
8.7. Водоросль и решение глобальных проблем
Крошечная морская водоросль, которая может служить топливом для автомобилей, кормом для скота и к тому же она существенно снижает загрязнение окружающей среды. Слишком хорошо, чтобы быть правдой.
В университете Австралийского Северного Клинсвенда ученые сделали открытие, которое со временем может оказать существенное воздействие на несколько видов индустрии.
Сама водоросль не нуждается в особых условиях, чистая морская вода и свет – этого ей вполне достаточно, чтобы расти и развиваться. Она к тому же высасывает углекислый газ – этого требуют молекулы хлорофилла, из которых она состоит по большей части. Но, кроме того, она способна превратить углекислый газ в гораздо более полезные ресурсы – в сахариды, протеины и даже масло.
Водоросль чрезвычайно быстро размножается, она способна увеличить массу вдвое за каждые 48 часов. Поскольку в ней довольно высокое содержание масел, ее можно использовать в качестве сырья даже для изготовления пластика и биотоплива. А из отходов уже этого производства можно получать концентрат, содержащий до 70 % протеина и вот его можно добавлять в пищу скоту. Все, что требуется – это заполнить сырьем контейнеры, в которых водоросль может развиваться. Затем остается просто собрать урожай. На самом деле это источник постоянно возобновляемой биомассы, которая помимо всего прочего содержит иоксиданты.
Биотопливный потенциал водорослей является объектом пристального внимания учёных Франции, Германии, Японии и США с 50-х годов прошлого столетия, при этом особенно вопрос обострялся во время предыдущего нефтяного кризиса 70-х годов – в полной аналогии с нынешним состоянием дел. [8-16].
Водоросли – это органика, прекрасно подходящая для получения биодизельного топлива, обеспечивает отличный выход биомассы на каждый квадратный метр культивируемых площадей – в отличие от "сухопутных" растений; не содержит серы и других токсичных веществ – в отличие от нефти; наконец, отлично разлагается микроорганизмами и, главное, обеспечивает высокий процент выхода готового к использованию топлива: для некоторых типов водорослей – до 50 % от исходной массы! [8-16].
Микроводоросли аккумулируют для строения мембраны различные липиды и жирные кислоты, их содержание колеблется у разных видов водорослей в пределах от 2 % до 40 % от общего веса [8-16].
Рис. 8–8. Внешний вид фотобиореактора для выращивания водорослей [16].
Таблица.8-2
Получение топлива с гектара. [8-16].
При оптимальных условиях роста микроводорослей можно достигнуть производительности до 168518 литров с га в год.
34 млрд. литров биодизельного топлива может быть произведено на площади в 200 тысяч га в пустынях (для производства такого же количества биотоплива из рапса потребовалось бы занять порядка 23.5 млн. га).
В США проблемой получения недорогого биодизельного топлива для автомобилей занимаются десятки компаний и множество научных групп в самых разных университетах страны. В Центре технологий создания биотоплива (Center for Biorefining) при университете штата Миннесота (University of Minnesota) разработан "фотобиореактор", в котором обеспечивается оптимальный режим перемешивания света и питательных веществ для хорошего выхода продукции при работе даже с "дикими" культурами водорослей.
Главная цель, которая стоит перед исследователями – снижение себестоимости производства биотоплива.
Для замены всех видов топлива на транспорте США, потребуется 640 млрд. литров биодизельного топлива., Для получения этого количества потребуется суши почти 39000 квадратных км. Пустыня Sonora в юго-западной части США составляет 120000 квадратных километров. То есть, необходимая площадь составляет 12.5 % от площади этой пустыни.
8.8. Производство биодизеля из водорослей
Наиболее перспективным источником сырья для производства биодизеля являются водоросли. По оценкам Департамента Энергетики США с одного га земли можно получить 630 литров соевого масла, или 5930 литров пальмового масла. С такой же площади водной поверхности можно производить до 5327481 л бионефти. По оценкам компании Green Star Products с 1 га земли можно получить 540 соевого масла, 1573 л масла канолы и 112346 л из водорослей.
Департамент Энергетики США с 1978 года по 1996 год исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program»[18]. Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 м2. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 граммов водорослей с 1 м2 в день. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США. 200 тыс. гектаров – это менее 0,1 % земель США, пригодных для выращивания водорослей. У технологии ещё остаётся множество проблем. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах температур. В конце 90-х годов технология не попала в промышленное производство из-за низкой стоимости нефти.
Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.
В 2006 году несколько компаний объявили о строительстве заводов по производству биодизеля из водорослей:
– Global Green Solutions (Канада) по технологии компании Valcent Products (США) – мощность производства 4 млн. баррелей бионефти в год;
– Bio Fuel Systems (Испания);
– De Beers Fuel Limited (ЮАР) по технологии Greenfuel Technologies Corporation (США) – мощность производства 900 млн. галлонов биодизеля в год (водоросли + подсолнечное масло)
– Aquaflow Bionomic Corporation (Новая Зеландия) – мощность производства 1 млн. литров биодизеля в год.
Литература
8-1. Bодоросли – источник энергии и биотоплива., www. zaryad.com.
8-2. Хозяйственно полезные виды водорослей., www.volimo.ru.
8-3. Биодизель из водорослей: понятие водорослевой фермы., www. paskalex. blogspot.com.
8–4. Золотая" солярка из водорослей., www.economenergy.com.ua.
8-6. Израильские инновации в агротехнологии.,
www.theisraelproject.org.
8-7. Seambiotic Algae Into Biofuel a «Greener» Story In $10 Million Joint Israeli and Chinese Project. www.greenprophet.com.
8-8. Немного o биотопливах, ТОПЛИВО И ЭНЕРГИЯ., www.zelife.ru.
8-9. Использование потенциала очищенной воды городов для производства биотоплива., www.auto.gazeta.kz.
8-10. Альтернативное топливо: водорослями по кризису.,
www.segodnya.ua.
8-11. Эйхорния – корм, биотопливо и удобрение., www. pionerllc.ru.
8-12. Тонны водорослей отдают топливо в обмен на дым заводской трубы www.membrana.ru.
8-13. БИОТОПЛИВО ИЗ ВОДОРОСЛЕЙ – от большой нефти к большим водорослям., www.venture-biz.ru
8-14. Биоэнергетика → Золото Днепра., www.alternativenergy.ru.
8-15. Биоэнергетика → Водоросли Eucheuma в энергетике., www. alternativenergy.ru.
8-16. Водоросли – топливо будущего? www.3dnews.ru.
8-17. Широкомасштабное производство биодизеля из водорослей., www.fundconstellation.net.
8-18. Биотопливо – Википедия., ru.wikipedia.org.
8-19. Эйхорния – корм, биотопливо и удобрение., www. pionerllc.ru.