Наиболее глубокое обоснование геохимические принципы классификации почв получили в трудах М. А. Глазовской. По сочетанию двух признаков — щелочно-кислотных и окислительно-восстановительных условий — она выделила 11 геохимических ассоциаций почв, которые, в свою очередь, разделяются на генерации и семейства. Большое значение классификации Глазовской состоит в использовании геохимических параметров, играющих действительно ведущую роль в жизни почв. Обменные катионы в классификации Глазовской также учитываются, но таксономический ранг этого признака более скромный, соответствующий его роли в почвообразовании.
Другое направление геохимии почв — изучение поведения отдельных элементов в почвах, в первую очередь микроэлементов. Начало этому направлению было положено в 1913 г. статьей В. И. Вернадского о химическом составе почв, в которой ученый ставил вопрос о необходимости определения в почвах рубидия и газов. В дальнейшем Вернадский не раз обращался к вопросу об анализе почв с геохимической точки зрения. В 1950 г. ученик Вернадского акад. А. П. Виноградов (1895—1975) опубликовал монографию, в которой охарактеризовал содержание в почвах бора, фтора, брома, йода, мышьяка, селена, лития, рубидия, хрома, цезия и других микроэлементов. В последнее десятилетие число исследований по микроэлементам в почвах растет очень быстро.
Химические элементы находятся в почвах в различных формах: в виде свободных ионов в растворе, в поглощенном и рассеянном состоянии, входят в органическое вещество и неорганические соединения — минералы. Содержание последних особенно велико и часто составляет 95—99% веса почвы. Поэтому так важно минералогогеохимическое изучение почв.
Почва как биокосная система
Биологические явления в почвах всегда привлекали внимание исследователей: развивалась почвенная микробиология, изучались почвенная флора и фауна (например, черви, грызуны). Однако первые десятилетия развития докучаевского почвоведения были отмечены, как мы убедились, преимущественно вниманием к проблемам географии и химии почв. Несколько особняком в эти годы стоял Б. Р. Вильямс (1863—1939), который главное внимание уделял именно биологическим аспектам почвообразования; применял он и системный подход. Для творчества Вильямса были характерны крупные обобщения; ученый полагал, что сущность почвообразования заключается в создании и разрушении органического вещества.
В построениях Вильямса имелись и ошибочные положения. Сейчас эти вопросы уже решены временем, в связи с чем возникла возможность в исторической перспективе объективно оценить вклад В. Р. Вильямса в науку и практику. Отвергая слабые стороны в творчестве ученого, его неправильные рекомендации, следует отдать должное его научным достижениям. Вдумчивый исследователь в трудах Вильямса еще долго будет находить пищу для размышлений и движения вперед.
В дальнейшем с внедрением в почвоведение геохимических идей Вернадского изучение почв как биокосных систем приобрело значительное распространение. Важную роль здесь играли труды Б. Б. Полынова и его школы, И. В. Тюрина, Н. П. Ремезова. М. М. Кононовой и многих других почвоведов. Попробуем рассмотреть эту проблему с современных геохимических позиций.
Несомненно, важнейшая особенность почв связана с работой живого вещества, преимущественно микроорганизмов, разлагающих органические остатки. Миллионы и миллиарды микроорганизмов обнаружены в каждом грамме почвы; они пронизывают все вещество почвы, находятся в почвенных растворах самых тонких капилляров.
В ходе разложения органических веществ освобождается энергия, аккумулированная при фотосинтезе, причем не только в тепловой, но и в химической работоспособной форме. Именно в этих процессах автор усматривает сущность почвообразования, полагая, что вторая составляющая, намеченная Вильямсом, — образование органического вещества — имеет хотя и важное, но все же подчиненное значение.
Разлагая остатки растений и животных, микроорганизмы изменяют состав почвенного раствора и воздуха, обогащая последний CO2, СН4, NH3 и другими газами. Почвенные растворы, насыщаясь CO2, органическими кислотами и другими соединениями, становятся химически высокоактивными, они разлагают минералы, выполняют большую работу по их выветриванию.
Поэтому, чем быстрее в почве разлагается органическое вещество, тем богаче она химически работоспособной энергией тем дальше она от равновесия. Почвы — неравновесные, чрезвычайно динамичные биокосные системы, богатые свободной энергией. С этим связаны дифференциация вещества в почвенном профиле, его неоднородность, и в частности расчленение по вертикали на горизонты и подгоризонты — А0, A1, А2, В1, В2, В3 и т. д. (рис. 3). В некоторых почвах на расстоянии 0,5 м по вертикали резко меняются физико-химические условия и, например, кислая среда в поверхностном горизонте может смениться щелочной на глубине 20 см.
Таким образом, однородная, однообразная материнская горная порода в результате почвообразования превращается в чрезвычайно неоднородное тело. Но разнообразие — это информационная характеристика, так как с самых общих позиций понятие «информация» близко к понятию разнообразия. Поэтому почвообразование характеризуется не только накоплением энергии, но и накоплением информации, это процесс эндоэнергетический и антиэнтропийный (негэнтропийный). Почва — система, богатая информацией!
Рис. 3. Профиль солонца (по М. А. Глазовской, 1972). Для этих почв особенно характерны резкая дифференциация вещества, образование профиля, включающего в себя много генетических горизонтов.
Генетические горизонты: 1 — надсолонцовый гумусово-элювиальный; 2 — иллювиальный солонцовый; 3 — иллювиальный карбонатный; 4 — иллювиальный гипсовый, 5 — иллювиальный солевой; 6 — почвообразующая порода (карбонатная, гипсоносная, засоленная). На небольшом расстоянии по вертикали (не более 0,5 м) меняются щелочно-кислотные условия
Но каков «механизм» этого разнообразия, почему образуются горизонты, перераспределяются химические элементы по профилю? Здесь большое значение приобретает второй процесс, отмеченный Вильямсом, — образование органического вещества. Хорошо известно, что растения избирательно поглощают многие элементы, концентрируют их не в тех соотношениях, в которых они находятся в горных породах и почвах. Если в последних преобладают кремний, алюминий и железо (в среднем в земной коре их около 40%), то в растениях значительно больше калия, кальция, фосфора и серы. Поэтому корни растений, как своеобразный насос, перекачивают наиболее необходимые им химические элементы из нижних горизонтов почвы в верхние, куда они поступают после смерти организмов и разложения их остатков. Особенно это относится к таким важным для жизни элементам, как фосфор, сера, кальций, калий, а также ко многим микроэлементам. В результате создается возможность обогащения ими верхних горизонтов почв (биогенная аккумуляция), улучшения среды существования растений.
Наряду с такой биогенной миграцией химических элементов снизу вверх в почвах наблюдается и физико-химическая миграция элементов в водных растворах. Атмосферные осадки, просачиваясь в почвы водоразделов, выщелачивают из них подвижные элементы, и поэтому реальное распределение химических элементов по почвенному профилю определяется взаимно противоположными процессами — биогенной аккумуляцией, направленной снизу вверх, и выщелачиванием, направленным сверху вниз. Еще сложнее распределение элементов в почвах склонов, низин, где наблюдаются боковой сток вод, капиллярное поднятие растворов из грунтовых вод (рис. 4).
Окислительно-восстановительные процессы и ряды почв. В химическом отношении разложение органических веществ — это процесс окислительно-восстановительный, так как углерод, водород и другие элементы, входящие в состав органических соединений, при этом окисляются до простых минеральных соединений — CO2, H2O, солей фосфорной, серной и других кислот. Главный окислитель — свободный кислород — при этом восстанавливается[6]. Окислителями и восстановителями могут быть и другие элементы, например железо, но основной вывод от этого не изменится: сущность почвообразования с химических позиций заключается в окислительно-восстановительных реакциях. Отсюда нетрудно предположить, что и главные различия между почвами связаны именно с их окислительно-восстановительными условиями.
Рис. 4. Схема взаимно противоположных процессов — биогенной аккумуляции (1) и выщелачивания (2) в почвах разных ландшафтов.
Соотношение биогенной аккумуляции и выщелачивания определяет строение профиля важнейших типов почв. Ширина стрелок характеризует относительную интенсивность процессов, длина — сравнительную глубину проникновения процесса
Для большинства почв характерно присутствие в почвенном воздухе и почвенном растворе свободного кислорода — очень энергичного окислителя, который поступает в почву из атмосферы. Поэтому в таких почвах многие химические элементы находятся в окисленном состоянии, т. е. характеризуются более высокой валентностью. Например, железо в почве может быть трехвалентным (окисленным) и двухвалентным (восстановленным). Минералы трехвалентного железа — гематит, гетит и другие — имеют желтую, красную, коричневую, бурую окраску и легко узнаются при наблюдении почв в природе. Правда, окраска нередко маскируется черным цветом почвенного гумуса, но ниже гумусового горизонта она обычно выражена отчетливо. Если в почвенном воздухе и почвенном растворе много свободного кислорода, то железо преимущественно находится в трехвалентной форме, почвы окрашены в теплые тона.
Такую обстановку, когда в системе есть свободный кислород и яркие минералы трехвалентного железа, в геохимии принято называть окислительной. Конечно, это несколько условный термин, так как одновременно с окислением в почвах происходит, как мы убедились, и восстановление кислорода, однако при наименовании обстановки учитывались именно процессы окисления многих элементов свободным