логии химических методов исследования. Но вместе с тем все чаще напрашивается мысль: а нельзя ли применить в биологии физические законы, справедливые для неживой природы? Не пригодится ли физическая наука с ее столь солидной аналитической базой для познания функциональных схем животных и растений?
В сущности, эта мысль такая же древняя, как сами биология и физика. На каждой ступени развития науки люди снова и снова пытались приложить физические знания к исследованию биологических систем. Но каждая такая попытка проникнуть в тайны живого кончалась неудачей. Попробуйте, пренебрегая этим опытом, бездумно применить недопустимо упрощенные физические постулаты для объяснения биологических явлений, и вы обязательно натолкнетесь на противоречия. А отсюда неизбежно следовал вывод: законы живого мира, — очевидно, законы особого рода. Живые организмы, вероятно, не подчиняются законам, действующим в неживых системах. И вот вследствие незрелости естественной науки на этой почве расцвели философские учения, утверждавшие некую жизненную силу — vis vitalis[2].
Повсюду вода течет сверху вниз. Но в деревьях она движется снизу вверх, от корней к листьям. Значит ли это, что здесь нарушен закон тяготения? К такому заключению неизбежно пришел бы естествоиспытатель, если бы он применил к биологической системе исключительно законы гидростатики. И только обратившись к термодинамике, мы можем понять, что никакая таинственная vis vitalis не противостоит здесь физическим законам. Просто в данном случае мы имеем дело с обычным осмотическим давлением, наблюдаемым, кстати, и в неживой природе; это давление противодействует силе тяготения, конечно, действующей и в растениях, и вызывает подъем воды в стволе.
Если при изучении биологических процессов не ограничиваться простым описанием их, а стремиться выяснить управляющие ими механизмы (в физическом смысле этого слова), то, учитывая сложность биологических систем, следует обратиться к физике. Но, поскольку физика также находится в процессе развития, она к сожалению, не в состоянии объяснить многие явления жизни. Действительно, для объяснения некоторых даже простейших биологических явлений приходится прибегать к очень сложным физическим понятиям. И не только физика, но и связанная с ней математика подчас не способны нам помочь. Даже большие успехи в области электронно-вычислительной техники, позволившие произвести кое-какие расчеты биологических систем, еще недостаточны для решения сложных систем уравнений, описывающих поведение живых систем.
Но не будем унывать, а попытаемся прикинуть, что же все-таки могут дать нам здесь современные физика и математика. "Выжимая" из этих небиологических дисциплин все возможное, мы тем самым подтолкнем их развитие. Во многих случаях уже сейчас использование в биологии физических и математических методов приносит успех. Наши знания, наши научно-технические достижения, по-видимому, находятся на том уровне, который позволяет осмысленно использовать физику и математику для изучения жизни. К этим достижениям относятся прежде всего такие крупные теоретические дисциплины, как волновая механика, статистическая физика, термодинамика; высокочувствительные электронные устройства, позволяющие с очень высокой точностью определять чрезвычайно малые электрические и магнитные потенциалы биологических макромолекул, клеток и организмов, и, наконец, электронные вычислительные машины, производящие с фантастической скоростью счетные операции, для выполнения которых человеку с карандашом и бумагой в руках понадобились бы годы и даже десятки лет.
Таким образом, не удивительно, что в последние десятилетия бурно развиваются биофизика и биоматематика. Все шире становится круг исследователей, работающих в этих смежных областях, все больше появляется научных статей. Но что знает об этом развитии небиолог?
Так попытаемся задуматься над некоторыми из их проблем и теорий. Попробуем взглянуть на биологию не в традиционном плане, а с иной точки рения. Для этого, несомненно, необходим весь комплекс знаний физики и математики, которым читатель, может быть, и не обладает. Поэтому в нашей книге мы рассмотрим такие примеры, которые позволят даже несведущему в естественных науках человеку понять основные принципы. Мы начнем с повседневного, с того, что нас окружает, познакомимся с удивительными свойствами и особенностями растений и животных. Скоро мы убедимся, что физическое объяснение форм и функций возможно только в результате очень серьезных размышлений. Так, переходя со ступени на ступень, от живых организмов вплоть до молекулярного уровня, мы узнаем, на чем основана в биологии причинная связь между функцией и формой, между временем и пространством.
Большое и малое в сравнении
Былинка и телевизионная башня! Муха-журчалка и реактивный самолет! Жужелица и гоночный автомобиль! Есть ли смысл в этих сравнениях? Чему может поучиться инженер у живых организмов? Почему деревья не растут до неба и почему из мухи нельзя сделать слона? Почему слон не больше, а землеройка не меньше, чем они есть? Длина прыжка блохи во много раз превышает длину ее тела. Почему же так не может прыгнуть кенгуру? Теория подобия в фармакологии, медицине и спорте.
С удивлением смотрят посетители на телевизионную башню. Высокая и тонкая, тянется она к небу. Внутри бетонной башни проложены различные коммуникации, а скоростной лифт перевозит людей и материалы. Вверху на головокружительной высоте башня расширяется. Здесь инженеры разместили аппаратуру; отсюда же, со смотровых площадок и из окон ресторана, перед посетителями открывается красивая панорама. Не правда ли, чудо техники?!
Однако кто же в наш век, когда мы буквально осыпаны всевозможными техническими достижениями, еще способен удивляться? И все-таки она удивительна, эта новая башня, и поражает нас своей высотой и стройностью. Но действительно ли башня так тонка, как кажется?
Посмотрим в рекламных проспектах, каковы высота и диаметр башни, и вычислим их отношение. Оно равно примерно 18, т. е. высота башни в 18 раз больше ее ширины. Много ли это?
Для сравнения вспомним тростник, который достигает в высоту 2 м, имея в диаметре лишь 1 см.
Отношение высоты h к среднему диаметру d у телевизионной башни значительно меньше, чем у стебля. Свидетельствует ли это о превосходстве биологической организации?
Следовательно, у тростника отношение длины стебля к его диаметру равно 200. А ведь стебель травы может быть еще тоньше! Выходит, телевизионная башня не "чудо техники", а всего лишь несовершенная копия того, что уже давно создано природой? Но не будем спешить с заключениями.
Живые организмы за миллионы лет эволюции действительно нашли такие решения различных технических задач, что у них могли бы поучиться и уже учатся инженеры. Внедрением подобных решений в технику занимается теперь специальная наука. Ее назвали бионикой, соединив таким образом воедино два слова: "биология" и "техника". Использовать в технике то, что уже создала природа, — такая задача стоит сейчас перед многочисленными группами исследователей во всем мире. На счету специалистов по бионике уже есть некоторые успехи. К их числу, несомненно, относится описанная нами телевизионная башня. И все же не будем торопиться с выводами, поскольку здесь сразу возникает множество разнообразных вопросов, которые ждут ответа. Прежде чем пытаться ответить на них, вновь обратимся к примерам.
Мухи-журчалки могут неподвижно висеть в воздухе и мгновенно исчезать, с большой скоростью срываясь с места
Наверное, каждый из нас, гуляя в спокойный и теплый летний день за городом, замечал насекомых, которые, подобно вертолету, неподвижно висят в воздухе. Но когда мы, желая их получше рассмотреть, приближаемся к ним, они мгновенно исчезают. Мы удивленно озираемся и обнаруживаем, что они мерцают уже где-то в метре от нас. Это мухи-журчалки, названные зоологами сирфидами (Syrphidae). Журчалки могут недвижно висеть на одном месте, а при малейшей опасности тотчас его менять. Они летят по прямой да так быстро, что мы даже не в состоянии проследить за ними глазами: мы лишь замечаем, что насекомое, только что бывшее здесь, уже находится в Другом месте и снова, точно вертолет, висит в воздухе.
Предположим, муха меняет свое местоположение всего за какую-нибудь десятую долю секунды, и за это время она пролетает около метра. Это значит, что ее скорость равна 10 м/с. (Вероятно, эта цифра несколько приуменьшена, но сейчас для нас это не существенно.) Следовательно, муха пролетает за секунду расстояние, в 1000 раз большее длины ее тела, которая составляет примерно 1 см.
А теперь представим себе самолет, длина корпуса которого, скажем, около 30 м. Если бы он мог покрыть за секунду расстояние, в 1000 раз превышающее эту длину, то его скорость должна была бы равняться 30 км/с, что в 100 раз больше скорости звука. В таком случае наш воображаемый самолет обогнал бы любую ракету. Но чтобы выдержать сравнение с мухой-журчалкой, он одновременно должен был бы обладать способностью неподвижно висеть в воздухе, подобно вертолету.
Этот пример еще поразительнее, чем сравнение былинки с телевизионной башней. Неужели действительно биологические системы настолько совершеннее технических? Уж не правы ли виталисты, говорящие о существовании некой "чудодейственной силы" (vis vitalis), которая присуща биологическим системам и непостижима для естественных наук?
Таких примеров сколько угодно. Читатель мог бы понаблюдать за проворной жужелицей и сравнить ее с автомобилем, подобно тому как мы сравнивали муху и самолет, или вспомнить водомерок, стремительно бегущих по поверхности пруда. Все эти сравнения удивительны. Как их понять?
Однако продолжим наши расчеты. Итак, муха пролетает за секунду расстояние, в 1000 раз большее длины ее тела. Поистине природа творит чудеса! А как быстро летают птицы? Способны ли они достичь такой же скорости?