Жужелица — один из самых проворных 'бегунов'. Сравнится ли с ней гоночный автомобиль, если сопоставить для них отношения скорости движения к длине (v/l)? Есть ли смысл в таком сравнении?
Один из самых быстрых наших "летунов" — ласточка. Длина ее тела около 10 см, следовательно, если использовать прежние соотношения, ее скорость должна быть 100 м/с, или 360 км/ч. Ласточка действительно летает очень быстро, но все же ее скорость по крайней мере в 4 раза меньше рассчитанного нами значения.
Что же тогда можно сказать о Скорости полета крупных птиц: лебедя, орла или аиста?
Если бы мы продолжили подобные сопоставления, то пришли бы к ошеломляющим результатам: слоны с огромной скоростью мчались бы по саваннам; кенгуру, соревнуясь с блохами, совершали бы километровые прыжки. А могли ли бы мы, подобно водомеркам, бежать по поверхности воды, если бы у нас было много ног? Конечно, нет! Мы должны признать, что простое сравнение, учитывающее только пропорции, себя не оправдывает. Почему? Ведь правило углов справедливо для треугольников любых размеров, и законы геометрии применимы как для расчета модели атома, так и для определения расстояния между Землей и Луной. Все это действительно так, но в науке следует остерегаться скороспелых обобщений.
Если природа творит чудеса, почему же слон не бежит быстрее? С какой скоростью он должен мчаться, чтобы отношение v/l было у него таким же, как у жужелицы. По-видимому, мы что-то не то сравниваем
Любая домашняя хозяйка по собственному опыту знает, что килограмм крупной картошки можно очистить быстрее, чем килограмм мелкой. Как известно из математики, поверхность шара увеличивается пропорционально квадрату его диаметра, а объем шара связан с диаметром кубической зависимостью, и потому в килограмме мелкой картошки кожуры больше, чем в килограмме крупной. Даже такой несложный геометрический пример показывает, что в расчетах не всегда можно исходить из простой пропорциональности. Инженерам это давно известно, и какой-нибудь сведущий в технике читатель уже на первом примере сморщил бы нос: "Телевизионную башню, тонкую как стебелек, я бы мог построить, но пусть она будет не выше травинки". Или: "Почему же в природе трава не вырастает до 200 м?" Последний вопрос заставляет о многом задуматься, и мы еще не раз к нему вернемся.
Каждый мальчуган, который когда-либо строил модель самолета, знает, что ее можно смастерить двумя способами. Можно построить уменьшенную копию настоящего большого самолета — серебристую птицу с двигателями, окошечками кабины и другими деталями. Однако подобная модель годится только для того, чтобы повесить ее над письменным столом, и, конечно, не следует ожидать, что она сможет летать. Если же мы хотим иметь летающую модель такого же размера, ее надо делать иначе, и в первую очередь следует изменить размеры и профиль крыла. В результате модель будет мало похожа на настоящий самолет.
За этим примером стоят серьезные проблемы техники и биологии.
Начнем с техники. Здесь на основе анализа сравнительно простых систем удалось выявить важные теоретические закономерности, которые использует и развивает сейчас биофизика.
Остановимся на авиации. Чтобы проверить расчеты конструкций и при необходимости исправить их, инженеры испытывают модели новых самолетов в аэродинамической трубе. При этом в большинстве случаев поневоле приходится обращаться к уменьшенным копиям, а для того чтобы результаты модельных испытаний можно было использовать на практике, ученые разработали теорию подобия.
Очень скоро выяснилось, что некоторые величины характеризуют различные движущиеся тела и позволяют сравнивать их между собой гораздо лучше, чем использованные нами ранее коэффициенты пропорциональности. Примером такой величины может служить так называемое число Рейнольдса (Re), которое играет огромную роль в авиации и судостроении; его рассчитывают по следующей формуле:
Форма потока, обтекающего шар, при различных числах Рейнольдса (Re). Поведение потока определяется не размерами тела, а только числом Рейнольдса, которое, правда, зависит от размеров
Кинематический коэффициент вязкости — это параметр, характеризующий "густоту" среды. Мы не будем подробно на нем останавливаться, а лишь отметим, что, если выразить скорость и длину в метрах и секундах, то кинематический коэффициент вязкости равен для воды 1,06⋅10-6, а для воздуха — 14,9⋅10-6.
Практический смысл числа Рейнольдса заключается в следующем: поведение потока жидкости или газа, обтекающего тело определенной формы при постоянном значении числа Рейнольдса, не зависит от размеров тела.
В качестве примера рассмотрим движущийся шар. Независимо от того, большой он или маленький, при числе Рейнольдса меньше 1000 воздух, вода или любая другая среда обтекают шар плавно, или, как говорят в гидродинамике, ламинарно. Как только число Рейнольдса превысит критическое значение (вследствие увеличения диаметра шара или скорости потока), сразу же появятся завихрения. Таким образом, если мы хотим определить аэродинамические свойства крыла самолета по поведению в аэродинамической трубе его уменьшенной модели, нам надо сначала определить число Рейнольдса для крыла самолета, исходя из реальных размеров и скорости последнего. Затем, зная размеры модели, следует установить такую скорость воздуха в трубе, при которой числа Рейнольдса для модели и настоящего самолета одинаковы.
Биологический объект в аэродинамической трубе. Такие устройства позволяют изучать поведение воздушного потока при обтекании летающих объектов
Специалисты по бионике рассчитали значения числа Рейнольдса для многих животных. Так, для ласточки — ее скорость полета 10 м/с и длина тела 0,01 м — мы получим
Re = (10 ⋅ 0,01) / (14,9 ⋅ 10-6) = 6700
Подобное значение числа Рейнольдса столь мало, что оно вряд ли может заинтересовать авиаконструктора. Если мы подставим в приведенную выше формулу значения скорости и размеров современного самолета, то сразу поймем, почему интерес авиаконструктора вызывают лишь шести- или восьмизначные числа. Как видно из рисунка, такие значения числа Рейнольдса (1 000 000 и выше) характерны лишь для дельфинов — наиболее крупных и быстрых пловцов.
Итак, даже технические системы, гораздо менее сложные, чем системы в живой природе, бессмысленно сравнивать только на основании пропорций. Сравнение систем одинаковой формы, но отличающихся друг от друга размерами можно проводить, опираясь лишь на безразмерные величины, определяемые на основе различных параметров систем. На сегодняшний день известны и применяются около ста таких безразмерных величин.
Но довольно техники. Мы познакомились в общих чертах с теорией подобия в технике, и, может быть, этим ограничиться? Действует ли теория подобия в биологии или это всего лишь интересная игра?
Конечно, теория подобия не есть основное направление исследований в биофизике, но с ней связаны многие проблемы, представляющие общебиологический интерес. Многое нам кажется совершенно очевидным и не вызывает никаких вопросов. Мы часто говорим: это так, потому что иначе и быть не может! Однако детей такой ответ обычно не удовлетворяет. Они терзают нас своими "почему?". Эта детская черта отличает и многих исследователей. Не одно крупное открытие было бы еще сделано, если бы человек не боялся спрашивать о тривиальном и удивляться вещам, ставшим для других повседневными.
Значения числа Рейнольдса для разных животных различаются на много порядков
Так не будем бояться спрашивать об обычном; почему мышь не может быть меньше, а слон — больше, чем они есть, почему кенгуру не может прыгать еще выше, почему деревья не растут до неба?
Мы узнали, что бессмысленно связывать "максимальные возможности" объектов с их размерами. Но почему? Лучше всего ответить на это на примере вопроса, уже поставленного выше: почему мы не можем бегать по воде, как водомерки? За ответом далеко ходить не надо: мы слишком тяжелы, и поверхностное натяжение воды нас не удержит. Можно возразить, что площадь наших ступней намного больше поверхности, которую занимают шесть лапок насекомого. При необходимости мы можем даже стать на водные лыжи. Но известно, что "водный лыжник" способен скользить по воде, лишь прицепившись к быстродвижущемуся катеру. И в этом случае его держит на воде не поверхностное натяжение, т. е. гидростатическая сила, а сила гидродинамическая.
Но одно, во всяком случае, несомненно: свойства материала не зависят от величины объекта, поэтому поверхностное натяжение воды совершенно одинаково как для водомерки, так и для человека. Однако человек создает слишком большую нагрузку на поверхность и "проваливается".
Чтобы рассмотреть этот вопрос подробнее, обратимся к математике. Здесь нам понадобятся два символа: знак l — характеристический размер тела, например его длина или диаметр, и знак ∼, обозначающий пропорциональность. Две величины являются пропорциональными, если, например, удвоение одной из них влечет за собой удвоение другой. Очевидно, совсем не обязательно знать, сколько стоит килограмм картошки, чтобы утверждать, что два килограмма ее стоят вдвое дороже, чем один. Цена картошки пропорциональна ее весу. Выше, когда мы сравнивали чистку больших и маленьких клубней картошки, мы упомянули об отношении поверхности клубней и их объема к диаметру. Утверждение: поверхность возрастает пропорционально квадрату диаметра — можно записать следующим образом:
поверхность ∼ l2.
Площадь поверхности куба с длиной ребра l равна 6⋅l2, а его объем составляет l3. Таким образом, площадь поверхности пропорциональна l2, а объем пропорционален l3. Эти соотношения справедливы для тел разной формы
Теперь мы хотим узнать, какую картошку можно очистить быстрее. Предположим, что время чистки прямо пропорционально поверхности, т. е. для получения одного квадратного метра кожуры нужно в обоих слу