Биология в новом свете — страница 7 из 24

Измерение плюс вычисление — это только один из возможных путей, ведущих к пониманию формы живого. Сколько нужно цифр чтобы правильно отобразить форму листа, контуры лягушки или панцирь рака? Конечно, с помощью числового метода мы можем охарактеризовать эти формы с большей или меньшей точностью, в зависимости от числа измеряемых параметров. Но это недостойно истинного математика; к тому же каждое новое измерение увеличивает степень многомерности фазового пространства, что делает расчеты неоправданно сложными. Значительно удобнее выявлять формы не по цифрам, а по аналогии. Это значит, что мы ищем математическую кривую, которая соответствует интересующей нас форме, т. е. аналогична ей, и может быть выражена формулой с возможно меньшим количеством постоянных величин, или констант.

Математикам известна такая универсальная формула, или, точнее, функция, которая позволяет математически выразить почти любую кривую, — это так называемый полином. Он записывается в виде ряда, который можно продолжать сколь угодно долго, но математик ограничивается лишь действительно необходимым числом членов, ибо с каждым новым членом полином все усложняется. Уравнение этого ряда выглядит так:

Оно показывает, как изменяется величина у в зависимости от изменения независимо меняющейся величины x. Обычно говорят, что y есть функция от x. Если значения x и у откладывать по осям системы координат, то мы получим кривую. Буквы a0, a1, a2, a3, a4, a5, a6,... обозначают константы, они могут быть положительными и отрицательными, большими, малыми и даже равными нулю. Меняя значения этих констант, математик "изгибает" кривую до тех пор, пока она не примет желаемую форму. Для описания простых кривых достаточно ограничиться малым количеством членов такого полинома. Сколько нужно сделать отдельных измерений, чтобы получить изображенный на рисунке полином четвертой степени, т. е. полином, содержащий член a4x4? Чтобы записать точную формулу, требуется только пять значений, а именно константы a0, a1, a2, a3 и a4. Собственно говоря, можно даже обойтись без первого значения, т. е. положить a0 = 0, тогда ось симметрии листа будет скользить по оси абсцисс. Мы видим, что с каждым новым членом наш полином описывает форму листа несколько точнее. Таким образом, с помощью полинома мы можем описать формы любых объектов независимо от их размеров, а также сравнивать их между собой.

С помощью полинома, универсальной математической формулы, можно получить почти любую кривую. Чем сложнее кривая, тем большее число членов должен включать соответствующий полином. Можно попытаться подобрать полином, описывающий, например, форму листа


'Машинная улитка'. ЭВМ рассчитала форму улитки, которая лучше всего соответствует реальной


Если мы хотим получить замкнутую кривую, то есть представить лист целиком, то гораздо удобнее записать его форму в так называемых полярных координатах как функцию длины и угла вектора, поворачивающегося вокруг координатной оси.

На следующем рисунке показано, как можно с помощью ЭВМ обсчитать раковину улитки. Структуры аммонитов[3], так называемые лопастные, или шовные, линии, можно также выразить математически и соответствующие формулы ввести в память ЭВМ, что позволяет детально анализировать форму структур. Это имеет большое значение в палеонтологии и геологии, поскольку аммониты являются одной из самых важных групп "руководящих" ископаемых в некоторых слоях осадочных пород и по малейшим изменениям формы их лопастных линий можно судить о возрасте геологической породы.

Лопастные линии в раковинах аммонитов. Эти кривые можно выразить математически и ввести в память ЭВМ


Итак, форму живого организма можно не только характеризовать размерам, но и описать математически.

Теперь попытаемся с помощью математических формул представить какой-нибудь биологический процесс, например выразить кривую роста. Уму непостижимо: сначала математическое описание формы, а теперь — биологического процесса! Но это кажется трудным только неспециалисту в силу инертности нашего повседневного мышления, привычки воспринимать лишь то, что мы непосредственно ощущаем органами чувств. Форму, то есть три измерения — длину, ширину и высоту, — мы "видим". А изменение этой формы, иначе говоря, изменение этих трех параметров во времени, мы "переживаем". Мы должны запастись терпением и временем и ждать. Для математика время, выраженное в секундах, часах, днях и т. д., такая же счетная величина, как длина и ширина. Если замысловатую форму растения мы выразили с помощью n параметров, представив ее точкой в n — мерном фазовом пространстве, то нам ничего не стоит добавить к ним (n + 1)-й параметр, время, и рассматривать изменение формы растения, т. е. его рост, как ход кривой в (n + 1)-мерном фазовом пространстве.

Итак, из звезды получается комета — звезда с хвостом, летящая по заранее определенному пути. Мы установили, что нумерическая таксономия позволяет представить биологический вид как облачко точек в фазовом пространстве. Если теперь мы добавим время, скажем, продолжительность жизни отдельной особи, то получим уже не облачко точек, а более или менее плотный пучок кривых, представляющих собой кривые роста. Несколько позже мы остановимся на них подробнее, а сейчас хотелось бы высказать еще одно соображение.

Ничто не в силах остановить математика. Не остановился он даже перед авторитетом Декарта, искривив прямоугольную систему координат, названную в честь величайшего математика и мыслителя XVII века "декартовой". Однако в качестве оправдания своих действий математик может сослаться на четвертое правило из "Рассуждений о методе" самого Декарта, которое гласит: "Для познания действительности необходим метод". И в данном случае метод состоит в том, что прямоугольную сетку линий вместе-с нанесенными на нее фигурами непрерывно изгибают в соответствии с формулами. На языке математики этот метод называется преобразованием системы координат.

Более пятидесяти лет назад д'Арси Томпсон написал книгу "Рост и форма" (On Growth and Form, Cambridge, 1917). Это была одна из первых работ по математической биологии: в ней высказывалась мысль, что преобразование координат удобно применять для описания изменений биологических форм. На рисунке показан пример, приведенный в книге Томпсона, который отражает не рост отдельного организма, а видоизменение, превращение формы в процессе исторического развития. Томпсон пришел к следующему заключению: если рассматривать только внешнюю форму какого-либо организма и задать ее параметры в декартовой системе координат, то форму другого близкородственного организма можно считать результатом непрерывного изменения координат. Следовательно, процесс развития вида в целом можно описать математически соответствующим преобразованием системы координат.

Что это нам дает? Мы нашли способ отобразить природный процесс в формулах и числах. Эти числа вместе с программой мы можем ввести в ЭВМ, и машина с невероятной скоростью и "терпением" проведет самые сложные расчеты. ЭВМ сможет легко рассчитать все возможные промежуточные формы, независимо от того, существовали они или нет на ранних этапах истории Земли. Машина может также экстраполировать, т. е. "мысленно" продолжить путь эволюции. Нам же останется только решить, будет ли "рассчитанный" организм жизнеспособным в реальной действительности или нет. Однако все это справедливо лишь при условии, что с течением времени в соответствии с определенными правилами изменяются только формы, а сами правила, отражающие законы природы, остаются неизменными. Таким образом, буквально на глазах возникает новая проблема. К сожалению, мы не имеем возможности обсуждать ее здесь, хотя в последнее время она получила некоторое развитие.

На примере формы тела у рыб близких родов [Diodon (А) и Qrthagoriscus (Б)] д' Арси Томпсон показал, что изменение формы можно описать с помощью соответствующего преобразования системы координат


Мы сделали первый шаг — заключили форму живого организма в систему координат, и не только форму, но и ее изменения. Как мы видели, это не просто, но тем не менее с помощью современной вычислительной техники можно добиться хороших результатов. Итак, в ЭВМ ввели параметры живого организма; она ждет приказа! Что с ними делать? Кое-что мы уже наметили. Машина должна, например, выяснить, насколько интересующий нас организм родствен какому-либо другому. Предположим, что получено число, которое соответствует расстоянию между двумя точками в фазовом пространстве и тем самым позволяет рассчитать степень родства двух организмов. ЭВМ должна установить, к какому виду, к какой расе и с какой вероятностью относится организм, форма которого характеризуется данными параметрами. Она должна высчитать, какую форму должен был бы иметь еще не открытый палеонтологами организм, который по своему геологическому возрасту, с одной стороны, старше, а с другой — моложе уже известных организмов. При этом может выясниться, что форма В произошла не от формы А, а возникла параллельно. Не так уж плохо! Однако в начале главы мы ставили перед собой более смелую задачу — найти ответ на вопрос: почему организм имеет ту или иную форму?

Вернемся к нашей исходной точке зрения, а именно к положению, что организм представляет собой систему, достигшую оптимальности в процессе борьбы за существование, и выясним, насколько применима здесь теория оптимальных процессов. В чем состоит суть этого метода? Это старая и в то же время новая отрасль математики. Старая, потому что данные методы возникли не сегодня, и новая — потому что внедрение и использование их на практике стало возможным только в век совершенных счетных машин. Началом теории оптимальных процессов можно считать формулу, которую свыше двухсот лет назад вывел великий математик Леонард Эйлер. Но предпосылки к созданию этой теории были заложены много раньше.