Большая книга занимательных фактов в вопросах и ответах — страница 4 из 229


1.25. Что представляет собой гравитационная линза?

Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных линз, предположим, что мы наблюдаем в небе массивный объект (например, галактику), за которым спрятан другой объект, значительно более удаленный. Подобно тому, как стеклянная линза воздействует на лучи света, отклоняя их от прежнего направления, так и ближний объект своим гравитационным полем может отклонить расходящиеся световые лучи, идущие от объекта, расположенного за ним, фокусируя их. Подобный эффект назвали гравитационной линзой. К сожалению, гравитационная линза ведет себя не столь «идеально», как оптическая. Изображение увеличивается неравномерно и по-разному искривляется в зависимости от типа объекта, проявляющего свойства линзы, и направления световых лучей, идущих мимо него. Наиболее часто встречающиеся конфигурации – это двойные или множественные изображения одного и того же объекта (отстоящие друг от друга на несколько десятых долей угловой секунды) или угловое смещение изображения источника. Идеальная ситуация – когда источник света, линза и наблюдатель находятся на одной прямой. В этом случае изображение источника имеет вид светового нимба. Диаметр такого нимба, так называемого кольца Эйнштейна, является одним из важнейших параметров для вычисления массы объекта, играющего роль линзы.


1.26. Какой химический элемент наиболее распространен во Вселенной?

Наиболее распространенными во Вселенной являются самые легкие элементы – водород и гелий. Солнце, звезды, межзвездный газ по числу атомов на 99 процентов состоят из них. На долю всех других, в том числе самых сложных «тяжелых», элементов приходится менее 1 процента. По массе 76,5 процента приходится на водород, 21,5 процента – на гелий, 0,3 процента – на неон, 0,82 процента – на кислород, 0,34 процента – на углерод, 0,12 процента – на азот, 0,12 процента – на железо, 0,07 процента – на кремний, 0,06 процента – на магний, 0,04 процента – на серу. Остаток – 0,13 процента – приходится на все другие элементы. Таким образом, самым распространенным во Вселенной химическим элементом является водород. Невидимый невооруженным глазом, этот газ может быть обнаружен с помощью радиотелескопов по испускаемым радиоволнам длиной 21 сантиметр. Водород заполняет почти все межзвездное пространство, однако он невероятно разрежен: всего один атом на 10 или даже 100 кубических сантиметров. Тем не менее, поскольку межзвездное пространство огромно, огромен и общий объем газа. Некоторые водородные облака «горячие», они имеют температуру до 7500 градусов, в редких случаях температура водорода доходит до миллионов градусов. Существуют также водородные облака большей плотности, в которых на 1 кубический сантиметр приходится от 10 до 100 атомов. Эти облака гораздо холоднее: их температура может опускаться до -200 градусов Цельсия.


1.27. Почему ночное небо темное?

Если бы Вселенная была бесконечна в пространстве и времени, то в любом направлении на луче зрения оказалась бы какая-нибудь звезда. Вся поверхность ночного неба должна была бы представляться ослепительно яркой, подобно поверхности Солнца. Противоречие указанного утверждения с тем, что мы наблюдаем в действительности, называют парадоксом Ольберса – Шезо. Этот парадокс невозможно объяснить в рамках теории стационарной Вселенной. Однако его легко устранить, если учесть, что Вселенная возникла в результате так называемого Большого взрыва и что ее возраст составляет «всего» 13,7 миллиарда лет. Самые далекие объекты, которые мы способны увидеть, находятся от нас на расстоянии не более 13,7 миллиарда световых лет, а свет от более удаленных до нас еще просто не успел дойти к нам (скорость света, как известно, не бесконечна и составляет 300 000 километров в секунду). Вот почему ночное небо темное.


1.28. Как образовались химические элементы?

Большой взрыв создал только два химических элемента – водород и гелий (и небольшие количества дейтерия и лития). Все остальные элементы, заполняющие таблицу Менделеева, появились только после возникновения звезд. В их недрах в ходе термоядерных реакций синтеза постепенно образовались азот, кислород, углерод и более тяжелые элементы. Эволюция крупных звезд завершается их взрывами, после которых накопившиеся в таких звездах элементы рассеиваются в пространстве, загрязняют облака межзвездного газа и в свой час служат исходным сырьем для возникновения новых звезд. В мире, в котором мы живем, идет постоянная переработка первородной материи – Вселенная обогащается тяжелыми элементами, а самых легких становится все меньше. Из образовавшихся в звездных недрах химических элементов состоит и наша Земля, и все живые существа на ней, в том числе люди. Поэтому все мы в определенном смысле дети звезд.


1.29. Что такое Местная группа галактик?

Наша Галактика (Млечный Путь) вместе с галактикой Туманность Андромеды входит в небольшую группу из 30–40 галактик, которую астрономы называют Местной группой галактик. Наиболее удаленная из галактик Местной группы отстоит от Солнца примерно на 3 миллиона световых лет. Самая близкая – карликовая эллиптическая галактика в созвездии Стрельца Sag DEG (Sagittarius Dwarf Elliptical Galaxy) – удалена от Солнца на расстояние 80 тысяч световых лет. До 1994 года о существовании этой галактики не подозревали – главным образом из-за ее низкой светимости, а также потому, что ее границы очень замаскированы звездами Млечного Пути. Входящие в Местную группу галактики подразделяют на два «семейства» и нескольких «одиночек». Центром первого «семейства» является наша Галактика, образующая вместе с Большим и Малым Магеллановыми Облаками тройную систему (такие нередко встречаются во Вселенной). Сюда же относятся карликовые галактики Тельца, Малой Медведицы, Дракона, Секстанта, Скульптора, Печи, Льва и Малого Льва (они названы по созвездиям, где находятся), а также целая серия галактик-пигмеев. Все они – фактически спутники нашей Галактики, как и Магеллановы Облака. Второе «семейство» образовано туманностью Андромеды и ее спутниками (два близких и несколько далеких). Среднее расстояние между галактиками Местной группы на порядок (т. е. примерно в 10 раз) больше их средних размеров. Местная группа галактик, похоже, обречена на слияние с большим звездным скоплением Девы, которое находится в центре области сверхгигантских галактик.


1.30. Как было открыто космическое радиоизлучение?

Космическое радиоизлучение было открыто в декабре 1931 года американским физиком Карлом Янским (1905–1950), который изучал природу шумов, мешающих радиосвязи, а также причины помех в дальних телефонных линиях. С помощью построенной им 30-метровой антенны, напоминающей дождевальную установку, он неожиданно обнаружил радиоизлучение на волне 14,7 метра, исходящее из обширной области в центре Млечного Пути. Астроном-любитель и радиолюбитель Грот Ребер, узнав о работах Янского, сконструировал параболическую антенну диаметром 9 метров и открыл источники радиоизлучения в созвездиях Стрельца, Лебедя, Кассиопеи, Малого Пса, Кормы и Персея. Он же установил, что Солнце также является источником радиоволн. Так родилась радиоастрономия, позволившая открыть радиогалактики, пульсары, межзвездный газ и реликтовое излучение.


1.31. Что представляют собой Магеллановы Облака и почему они так называются?

Большое и Малое Магеллановы Облака – две близкие к нам галактики, спутники нашей Галактики (Млечного Пути). Они видны на небе в Южном полушарии невооруженным глазом (соответственно в созвездиях Золотой Рыбы и Тукана). Названы они в честь Фернана Магеллана, потому что впервые были описаны его спутником и биографом Пигафеттой. Расстояние до Большого Магелланова Облака составляет приблизительно 150 тысяч световых лет, до Малого Магелланова Облака – 170 тысяч световых лет. На небе Магеллановы Облака занимают значительную площадь. Большое Облако имеет поперечник 12 угловых градусов, что в 24 раза превосходит поперечник лунного диска, Малое – 8 угловых градусов. Однако по истинным размерам Большое Магелланово Облако не превышает половину нашей Галактики, а Малое – не больше пятой ее части. Кроме того, они менее плотно заполнены звездами. Большое Магелланово Облако содержит 5 миллиардов звезд (всего 1/20 от их числа в нашей Галактике), Малое – только 1,5 миллиарда звезд. В одном из звездных скоплений Большого Магелланова Облака находится звезда S Золотой Рыбы, фотометрическая светимость которой в 120 тысяч раз превышает солнечную. В центре Большого Магелланового Облака находится также гигантская газово-пылевая диффузная туманность, названная Тарантулом. Если бы эта туманность находилась от нас на расстоянии туманности Ориона (около 1500 световых лет), то освещенные ее светом предметы на Земле давали бы заметные тени. В феврале 1987 года в Большом Магеллановом Облаке вспыхнула сверхновая звезда, которую можно было видеть невооруженным глазом.


1.32. Что такое квазар?

С 1963 году астрономы стали открывать необыкновенные объекты, получившие в конце концов название квазар (quasar – quasi stellar radiosource – квази-звездный радиоисточник). В телескоп (или на фотографиях) почти все они неотличимы от звезд. Однако по интенсивности радиоизлучения квазары сравнимы с самыми мощными радиогалактиками, состоящими из десятков миллиардов звезд, а в оптическом диапазоне они излучают в сотни раз интенсивнее, чем обычные галактики. Квазары имеют также повышенную интенсивность ультрафиолетового излучения, наблюдаются выбросы газа и релятивистских частиц. Поражает исключительная компактность квазаров: их размеры значительно меньше светового года (у галактик они составляют 50—100 тысяч световых лет). Квазары показывают самые большие из известных значения красного смещения линий в спектре, а следовательно, являются самыми далекими от нас объектами. Большинство их находятся от нас на расстоянии более 10 миллиардов световых лет – видимо, они образовались, когда возраст Вселенной достиг всего 2–3 миллиардов лет. В последние годы множатся доказательства того, что вокруг центрального тела квазара располагается протяженная оболочка, светимость которой по порядку соответствует светимости обычной галактики, а диаметр сходен с размерами галактик. На этом основании в настоящее время принято считать, что квазар – это аномально активное ядро галактики.