Был ли Бог математиком? — страница 5 из 56

Нет практически никаких сомнений, что Пифагор родился в начале VI века до н. э. на острове Самос, неподалеку от побережья современной Турции. Вероятно, в юности он много путешествовал, особенно в Египет и, возможно, в Вавилон, где и получил первоначальное математическое образование. Затем он эмигрировал в маленькую греческую колонию Кротон у южной оконечности Италии, где вокруг него быстро собралась группа энтузиастов – учеников и последователей.

Греческий историк Геродот (ок. 485–425 гг. до н. э.) назвал Пифагора «величайшим эллинским мудрецом» (Herodotus 440 гг. до н. э.), а поэт и философ-досократик Эмпедокл (ок. 492–432 гг. до н. э.) восхищенно добавил (Porphyry ca. 270 AD)/

Жил среди них некий муж, умудренный безмерным познаньем,

Подлинно мыслей высоких владевший сокровищем ценным,

В разных искусствах премудрых свой ум глубоко изощривший.

Ибо как скоро всю силу ума напрягал он к Познанью,

То без труда созерцал любое, что есть и что было,

За десять или за двадцать провидя людских поколений.

(Пер. Г. Якубаниса в обр. М. Гаспарова.)

Однако не на всех учение Пифагора производило такое сильное впечатление. Философ Гераклит Эфесский (ок. 535–475 гг. до н. э.) в комментариях, в которых явственно прослеживается личное соперничество, признает широкие познания Пифагора, однако тут же пренебрежительно добавляет: «Многознание не научает быть умным, иначе бы оно научило Гесиода (греческого поэта, жившего около 700 г. до н. э. – М. Л.) и Пифагора» (пер. М. Дынника).

Пифагор и ранние пифагорейцы не были ни математиками, ни учеными в строгом смысле слова. Скорее, в основе их учения лежит метафизическая философия значения чисел. В глазах пифагорейцев числа были и актуальными сущностями, практически живыми, и универсальными принципами, которые охватывали все, от небес до человеческой этики. Иначе говоря, числа рассматривались с двух разных, хотя и взаимосвязанных сторон. С одной стороны, они существовали вполне осязаемо, физически, с другой – это были абстрактные рецепты, на основании которых строилось все остальное. Скажем, монада (число 1) понималась и как генератор всех прочих чисел, сущность, столь же реальная, сколь и вода, огонь и воздух, играющая свою роль в структуре физического мира, и как идея, метафизическая единица, стоящая у источника всего творения[8]. О двойном значении, которое придавали числам пифагорейцы, писал (на прелестном языке XVII века) и английский историк философии Томас Стэнли (1625–1678).

Число двояко – его можно понимать либо как нечто умственное (то есть нематериальное), либо как нечто научное. Умственное число есть та вечная сущность числа, которую пифагорейцы в своих рассуждениях о богах называли тем самым первоначалом, на котором и зиждется и земля, и небо, и заключенная меж ними природа… Именно его называют первоначалом, источником и корнем всего сущего… Научное же число Пифагор определяет как расширение и претворение в действие продуктивных первопричин, заключенных в монаде или в скоплении монад (Stanley 1687).

Итак, числа – не просто инструменты для обозначения количества или объема. Нет, их надо было открыть – и именно они служат основными движущими силами в природе. Все во Вселенной, от материальных объектов вроде Земли до абстрактных понятий вроде справедливости, – это числа и только числа.

В принципе, числа вполне могут заинтересовать и увлечь кого угодно, в этом нет ничего удивительного[9]. Ведь даже самые заурядные числа, с которыми мы сталкиваемся изо дня в день, и те обладают занятными свойствами. Возьмем, к примеру, число дней в году – 365. Нетрудно убедиться, что 365 – это сумма трех последовательных квадратов: 365 = 102 + 112 + 122. Мало того, это число также равно сумме двух следующих квадратов (365 = 132 + 142). Или рассмотрим число дней в лунном месяце – 28. Это число – сумма всех своих делителей (чисел, на которые его можно делить без остатка): 28 = 1 + 2 + 4 + 7 + 14. Числа, обладающие этим особым свойством, называются совершенными числами (первые четыре совершенные числа – 6, 28, 496, 8218). Отметим также, что 28 – это сумма кубов первых двух нечетных чисел: 28 = 13 + 33. Свои странности есть даже у такого широкоупотребительного в нашей десятичной системе числа, как 100: 100 = 13 + 23 + 33 + 43.

В общем, ясно, что в числах много интересного. И все же вполне можно задаться вопросом, каков источник пифагорейского учения о числах. Откуда появилась идея, что не просто всему на свете можно приписать число – что все на свете суть числа? Поскольку, либо пифагорейцы ничего не записывали, либо все их сочинения были уничтожены, ответить на этот вопрос нелегко. Мы имеем возможность составить впечатление о пифагорейской логике на основании небольшого числа доплатоновских фрагментов и гораздо более поздних и менее надежных суждений, принадлежащих в основном философам-последователям Платона и Аристотеля. Картина, которую удается воссоздать из этих разрозненных отрывков, наталкивает на мысль, что подобная одержимость числами, вероятно, объясняется тем, что пифагорейцы увлекались двумя занятиями, на первый взгляд не связанными, – музыкальными экспериментами и наблюдением над небесами.

Чтобы понять, как образовались все эти таинственные взаимосвязи между числами, небесами и музыкой, придется начать с интересного наблюдения: пифагорейцы придумали способ представлять числа в виде фигур из точек или камешков. Например, натуральные числа 1, 2, 3, 4,… они представляли в виде треугольников (как на рис. 1). В частности, треугольник, выстроенный из первых четырех целых чисел (треугольник из десяти камешков), называется тетрактида (тетрактис, тетрада, «четверица») и в глазах пифагорейцев символизировал совершенство и составляющие его элементы. Это нашло отражение в рассказе о Пифагоре, который приводит греческий сатирик Лукиан (ок. 120–180 гг.) Пифагор просит собеседника начать считать (цит. по Heath 1921). Тот считает: «Один, два, три, четыре…» Пифагор перебивает его: «Видишь? То, что ты принимаешь за четыре, на самом деле десять, идеальный треугольник и наша клятва». Философ-неоплатоник Ямвлих (ок. 250–325 гг.) говорит, что пифагорейцы и правда клялись особой клятвой (Iamblichus ca. 300 ADa; разбор см. у Guthrie 1987).

Именем клятву даю открывшего нам четверицу,

Неиссякаемой жизни источник.

(Здесь и далее пер. И. Мельниковой.)


Рис. 1


За что же так почитали тетрактиду? Дело в том, что в глазах пифагорейцев VI века до н. э. она воплощала в себе всю природу Вселенной. В геометрии – которая послужила трамплином для эпохальной древнегреческой научной революции – число 1 соотносилось с точкой , число два – с отрезком  или линией, число 3 – с плоскостью или поверхностью , а 4 – с трехмерным телом, тетраэдром . Поэтому тетрактида, по всей видимости, охватывала все пространственные измерения, доступные органам чувств.

Однако это только начало. Тетрактида неожиданно проявилась даже в музыковедении. Считается, что именно Пифагор и пифагорейцы открыли, что если разделить струну так, чтобы длины частей относились как соседние натуральные числа, получаются гармоничные созвучные интервалы – это заметно, когда слушаешь выступление струнного квартета. Когда две подобные струны звучат одновременно, звук получается приятным, если отношения длин этих струн представляют собой простую пропорцию (Strohmeier and Westbrook 1999; Stanley 1687). Например, струны равной длины (соотношение 1:1) звучат в унисон, при соотношении 1:2 получается октава, 2:3 – чистая квинта, 3:4 – чистая кварта. Выходит, что тетрактида не только охватывает все пространственные измерения, но еще и может считаться воплощением математических соотношений, которые лежат в основе музыкальной гаммы. Этот волшебный на первый взгляд союз музыки и пространства стал для пифагорейцев важнейшим символом, дарующим чувство гармонии («взаимного соответствия частей») космоса («прекрасного порядка вещей»).

Где же тут место небесам? Пифагор и пифагорейцы сыграли в истории астрономии роль пусть не главную, однако существенную. Они одними из первых предположили, что Земля имеет форму шара (возможно, потому, что считали сферу совершенной с математико-эстетической точки зрения). Возможно, они также первыми установили, что планеты, Солнце и Луна независимо, сами по себе движутся с запада на восток, в направлении, противоположном ежедневному (очевидному) движению сферы неподвижных звезд. Энтузиасты-наблюдатели ночного неба не пропустили и бросающиеся в глаза основные свойства созвездий – количество звезд и общие очертания. Каждое созвездие характеризовалось числом входящих в него звезд и геометрической фигурой, которую они образуют. И именно эти характеристики лежат в основе пифагорейской доктрины чисел, что ясно видно на примере тетрактиды. Пифагорейцы были под таким впечатлением от того, что геометрические фигуры, созвездия и музыкальные гармонии зависят от чисел, что числа стали для них и строительным материалом Вселенной, и первоначалом самого ее существования. Неудивительно, что девиз Пифагора гласил: «Все есть число».

О том, насколько серьезно воспринимали эту максиму сами пифагорейцы, можно судить по двум замечаниям Аристотеля. В компилятивном трактате «Метафизика» Аристотель пишет: «В это же время и раньше так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего» (здесь и далее пер. А. Кубицкого). В другом месте Аристотель живо описывает, как пифагорейцы почитали числа, и упоминает об особой роли тетрактиды: «Эврит [ученик пифагорейца Филолая] устанавливал, какое у какой вещи число (например, это вот – число человека, а это – число лошади);