Идея разъемной трубы разрешила вопрос довольно остроумно. В одном помещении можно было поставить дзе трубы разного диаметра с одной вентиляторной установкой и одним кожухом — правда, с разными скоростями потока в трубах, но с этим обстоятельством можно было мириться.
Хотя трубу проектировали для установки в специально строившемся помещении аэродинамической лаборатории, строители вовсе не располагали бесконечными возможностями. Для трубы с диаметром одной части в три метра, а другой — в шесть метров требовался кожух высотой шестнадцать метров и длиной пятьдесят два метра. По тем временам такое сооружение казалось грандиозным и, когда оно было осуществлено, стало единственным в мире.
Основную задачу, как произвести разъем двух труб, разрешил К. А. Ушаков. Он поставил часть трубы на колеса. Достаточно было небольшого усилия, чтобы движущаяся по рельсам отъемная часть заняла то или иное рабочее положение.
Так русский аэродинамический центр стал обладателем единственной в мире трубы — вернее, двух труб — с хорошими аэродинамическими формами, с быстрым и простым включением в работу первой и второй труб, со сравнительно малым расходом энергии при скорости потока в меньшей трубе до восьмидесяти метров в секунду и в большой — до двадцати пяти.
Первые испытания в этих трубах имели целью выяснить их качество. Испытывались профили крыльев, уже испытанные в различных иностранных лабораториях.
За первые двадцать лет своего существования лаборатория имени С. А. Чаплыгина только по непосредственному обслуживанию авиационной промышленности произвела около семидесяти пяти тысяч отдельных испытаний!
Эти работы оказали весьма существенную помощь в разрешении основных проблем авиации — скорости, дальности, грузоподъемности.
В то же время было произведено и громадное количество исследований для разрешения таких существеннейших проблем динамики и аэродинамики самолета, как штопор, вибрации, прочность.
Из теоретических работ особенно интересными и значительными представляются работы по вибрациям самолота.
Для получения наибольшей дальности, как уже говорилось, необходимо делать у самолета крылья возможно большего удлинения, но самолетов с длинными крыльями не существовало.
В мировой литературе по самолетостроению имелись отдельные указания на то, что при больших удлинениях в полете у крыльев возникают вибрации, причем колебания крыла нарастают настолько быстро и с такой силой, что крыло разрушается. Разрушается самолет так неожиданно, что наблюдателям с земли кажется, будто самолет взорвался в воздухе.
Такого типа нарастающие вибрации крыла получили название «флаттер».
Флаттер, как выяснилось затем, возникает в том случае, если скорость полета превысит некоторую определенную для данной конструкции величину, так называемую «критическую скорость».
Вопросы флаттера непосредственно возникли у нас в связи с проектированием знаменитого самолета РД — рекордного, дальнего, — на котором были совершены исторические перелеты экипажей В. П. Чкалова и затем М. М. Громова через Северный полюс в Соединенные Штаты Америки.
Самолет РД, или, по инициалам конструктора, АНТ-25, проектировался в отделе опытного самолетостроения ЦАГИ под общим руководством А. Н. Туполева бригадой П. О. Сухого. Отличительной чертой самолета являлась особенная приспособленность его для дальнего, беспосадочного перелета, выразившаяся в необычном удлинении крыла.
Строители самолета РД, естественно, опасались, что вследствие большого удлинения крыла критическая скорость РД будет очень небольшой — может быть, даже меньшей, чем его нормальная максимальная скорость. Если бы это было так, то каким образом можно ее увеличить до такой степени, чтобы данный самолет никогда не мог ее достигнуть?
Для решения поставленной задачи С. А. Чаплыгин предложил создать в экспериментально-аэродинамическом отделе ЦАГИ специальную группу флаттера.
Положение было трудным. Метода расчета, позволяющего определить критическую скорость, не существовало. Способа определить ее опытным путем также не знали. Не был даже установлен закон подобия для моделирования этого явления.
Никто не знал, в какой именно зависимости от свойств самолета находится критическая скорость, без чего трудно придумать средства для ее увеличения. Более того, даже понятий «флаттер» и «критическая скорость» в то время не существовало: считалось, что между флаттером и другими типами вибраций, происходящих от иных причин, а стало быть, и по-разному устраняемых, нет никакого различия.
К решению очень трудной задачи могли вести два пути. Можно было опытным путем исследовать только частный случай — крыло РД — и указать для него меры к предотвращению флаттера. Но возможно было подойти к решению задачи, проникнув сначала в физическую природу явления, создав общую теорию флаттера и на основании ее расчетный метод, годный для любого частного случая.
М. В. Келдыш и его сотрудники не были бы учениками Чаплыгина, если бы пошли первым путем. Они предпочли более трудный путь — путь создания общей теории, чтобы раз навсегда решить проблему флаттера, которая, очевидно, должна была при возрастающих скоростях становиться все более и более острой для всех новых машин.
Так оно и оказалось в действительности.
Уже в процессе работы над проблемой выяснилось, что критические скорости крыльев тогдашних самолетов не очень велики, и в ближайшем будущем самолетостроению предстояло столкнуться с проблемой флаттера не только для крыльев с большим удлинением, но я вообще для любого крыла.
Между тем авиаконструкторы вопросом вибраций на самолете мало интересовались. Е. П. Гроссман вспоминает, что, когда однажды он стал убеждать одного из крупных работников конструкторского бюро в необходимости произвести расчет на флаттер крыла самолета, проектированием которого бюро занималось, тот ответил:
— Я что-то не верю, что явление флаттера существует в природе. Может быть, теоретически оно и возможно, но ведь теория дает только приблизительную картину действительности. Во всяком случае, мы флаттера никогда еще не наблюдали!
Некоторые самолетостроители в то время считали, что «флаттер выдуман в ЦАГИ», и не думали, что могут столкнуться с этим указываемым теоретической наукой явлением.
Но прошло совсем немного времени, как действительность на жестоком опыте подтвердила теорию. В 1934–1935 годах несколько опытных самолетов погибло от возникновения флаттера. Объясняется это тем, что как раз в эти годы вышли на летные испытания новые машины, скорость которых значительно превосходила скорость прежних самолетов. В частности, потерпел аварию от флаттера опытный самолет СБ, хотя он был по своим летным и боевым качестам одной из лучших в мире машин. Отказаться от СБ — скоростного бомбардировщика — из-за этой аварии никто, разумеется, не думал. Группе флаттера предложено было немедленно засесть за изучение СБ и указать мероприятия, которые устранили бы раз и навсегда возможность флаттера на этой машине.
При расследовании аварии выяснилось, что флаттер СБ вызывался элероном. Но созданная группой флаттера теория в это время еще не охватывала этого специального вида флаттера. Тогда группа решила, ведя расчет СБ на флаттер, одновременно разработать и теорию этого явления.
Задача была решена за пять суток. Правда, в течение этих пяти суток руководитель группы М. В. Келдыш и основные ее работники не выходили из лаборатории. Но к сроку, данному правительством, расчет был закончен, и мероприятия для предотвращения флаттера на СБ были разработаны и указаны.
Когда все рекомендации теоретиков были осуществлены, опасность флаттера для СБ действительно исчезла, и машина пошла в серийное производство.
Явление флаттера настолько изучено в настоящее время, что оно уже практически не составляет никакого бедствия.
Трудно перечислить, да и вряд ли возможно сделать доступными общему пониманию теоретические работы экспериментально-аэродинамического отдела, сделанные в аэродинамической лаборатории учениками Жуковского, первым и старейшим из которых был Чаплыгин.
Он в полной мере использовал созданные Советской властью условия для неограниченного развития науки. Подобно своему великому учителю, с щедростью гения бросал он семена в благоприятную почву, и сеятели были достойны своей земли: мы знаем теперь и мировое значение и мощь русской авиации.
Большую трубу пустили в ход под новый, 1926 год. Через год строительство аэродинамической лаборатории было закончено. К центральному зданию большой трубы примкнули крылья с помещениями малых труб, с мастерскими, чертежными, рабочими кабинетами. На двери появилась эмалированная дощечка. На ней значилось: «Аэродинамическая лаборатория имени С. А. Чаплыгина».
И в течение пятнадцати лет каждое утро в урочный час открывал эту дверь первый ученик Жуковского, будь то лето или зима, дождь или снег, тепло или холод. Зимой он оставлял в вестибюле высокие просторные калоши, каких уже никто не носил, пальто и шапку и проходил в свой кабинет. В самом присутствии этого человека, в самом появлении его крупной, спокойной фигуры заключалась дисциплинирующая властность. Ему было уже много лет; его волосы были белы; пухлые веки, брови, складки лба как бы с трудом выносили тяжесть работы ума, и самая голова уходила в плечи, словно от утомления. Но глубокая мудрость его проникала во все хозяйство лаборатории, в каждый эксперимент, в каждую мысль сотрудника.
Необходимость практического решения проблемы полета, вставшей перед нашим аэродинамическим центром как задача эпохи, была хорошо понята и почувствована советской наукою. Его деятели никогда не уклонялись от разрешения вопросов, возникающих перед самолетостроителями, и среди наших аэродинамиков нет ни одного, кто считал бы свое дело сделанным полностью, если разгадана только физическая сущность явления и создана его теория. Наши аэродинамики не считают свою работу законченной до тех пор, пока конструктор самолета практически не использует научного достижения.