Оказывается, вполне способен. Далее нужно сравнить его теоретические ожидания с биологическими фактами. Выяснится, что, хотя в целом его идеи представляются весьма разумными, они нуждаются в значительной коррекции. Таким образом мы постепенно приблизимся к правильной точке зрения – точнее, если выразиться более скромно, точке зрения, которую я считаю правильной.
Я не уверен, что мой подход является самым лучшим и простым. Однако он мой. Я сам был «наивным физиком». И не смог отыскать более простого и ясного пути к цели, нежели моя кривая дорожка.
Хороший способ развить представления наивного физика – начать со странного, почти нелепого вопроса: почему атомы такие маленькие? Да, они действительно очень малы. Каждый фрагмент материи, с которым мы имеем дело в повседневной жизни, состоит из множества атомов. Чтобы донести этот факт до аудитории, подобраны многочисленные примеры, самый впечатляющий из которых принадлежит лорду Кельвину[6]. Представьте, что вы можете пометить молекулы в стакане воды; затем вылейте содержимое стакана в океан и тщательно перемешайте, чтобы равномерно распределить помеченные молекулы по семи морям. Если впоследствии вы наберете стакан воды в любом месте океана, то обнаружите в нем около сотни ваших меченых молекул. Разумеется, их будет не ровно 100 (даже если вычисления дают именно такой результат). Их будет 88, или 95, или 107, или 112, но вряд ли 50 или 150. Ожидаемое «отклонение», или «флуктуация», составит порядка корня квадратного из 100, то есть 10. Статистик выразит это так: вы обнаружите 100±10 молекул. Пока этот комментарий можно проигнорировать, однако позднее мы используем его в качестве иллюстрации статистического закона √n.
Реальный размер атомов[7] составляет примерно длину волны желтого света. Это сравнение существенно, поскольку длина волны грубо характеризует размеры мельчайшего объекта, видимого в микроскоп. Таким образом, подобный объект содержит тысячи миллионов атомов. Но почему атомы такие маленькие? Очевидно, данный вопрос является уловкой, поскольку в действительности он касается вовсе не размера атомов, а размера организмов, точнее, наших собственных тел. Атом мал в сравнении с «гражданской» единицей длины, например, ярдом или метром. В атомной физике обычно используют так называемый ангстрем (сокращенно Å), который составляет 10–10 метра, или, в десятичном представлении, 0,0000000001 метра. Диаметры атомов варьируют от 1 до 2 Å. «Гражданские» единицы, по сравнению с которыми атомы столь малы, тесно связаны с размерами наших тел. Согласно легенде, ярдом мы обязаны английскому королю-шутнику, которого советники спросили, какую единицу использовать. Он вытянул руку вбок и ответил: «Используйте расстояние от середины моей груди до кончиков пальцев, это подойдет». Правдива история или нет, но она важна для наших целей. Разумеется, король указал длину, сравнимую с его собственным телом, понимая, что любая другая будет неудобной. Несмотря на любовь к ангстремам, физик предпочитает слышать, что на его новый костюм потребуется шесть с половиной ярдов твида, а не шестьдесят пять тысяч миллионов ангстремов.
Таким образом, мы установили, что наш вопрос касается соотношения двух размеров – размера нашего тела и размера атома. С учетом неоспоримого главенства независимого существования атома, этот вопрос следует переформулировать так: почему наши тела столь велики в сравнении с атомом?
Представляю, как многие смышленые студенты-физики или химики оплакивали факт, что все наши органы чувств, составляющие вполне значимую часть организма, а следовательно с точки зрения вышеупомянутого соотношения состоящие из множества атомов, слишком грубы, чтобы ощутить влияние одиночного атома. Мы не можем увидеть, или почувствовать, или услышать отдельные атомы. Наши гипотезы на их счет заметно отличаются от непосредственных открытий, совершенных при помощи крупных органов чувств, и не могут быть проверены напрямую.
Обязательно ли это? Есть ли тому внутренняя причина? Можем ли мы проследить это состояние дел к некому первичному принципу, чтобы подтвердить и понять, почему ничто другое не совместимо с законами природы?
Наконец перед нами проблема, которую способен решить физик. Ответ на все эти вопросы утвердительный.
Если бы это было не так, если бы мы представляли собой организмы столь чувствительные, что один или несколько атомов сумели бы произвести ощутимое впечатление на наши чувства, – боже, какой была бы жизнь! Подчеркну: у подобного организма наверняка не развилось бы упорядоченное мышление, которое, пройдя немало ранних стадий, в конце концов сформировало бы, среди многих других идей, представление об атоме.
Мы выбираем именно этот момент, однако последующие рассуждения также применимы к работе других органов, а не только головного мозга и системы органов чувств. Тем не менее единственной действительно интересующей нас в нас самих вещью является то, что мы ощущаем, думаем и воспринимаем. По сравнению с физиологическим процессом, ответственным за мышление и чувства, остальные играют второстепенную роль, по крайней мере с точки зрения человека, если и не чисто объективной биологии. Более того, наша задача станет легче, если мы выберем для исследования процесс, тесно связанный с субъективными событиями, пусть и не осознавая истинной природы этого параллелизма. С моей точки зрения, он лежит за пределами естественных наук – и, вероятно, человеческого понимания.
Таким образом, перед нами возникает следующий вопрос: почему орган вроде нашего головного мозга, а также связанная с ним система органов чувств, должен состоять из невероятного числа атома, чтобы его физически изменчивое состояние соотносилось с высокоразвитым мышлением? Почему вышеупомянутая задача делает данный орган не совместимым с тем, чтобы являться – в целом или посредством периферических отделов, которые напрямую взаимодействуют с окружающей средой – инструментом достаточно тонким и чувствительным, чтобы зарегистрировать отдельный атом извне и отреагировать на него?
Причина такова: то, что мы называем мыслью, (1) само по себе упорядочено и (2) может использоваться лишь применительно к материалу, то есть восприятию или переживанию, обладающему определенным уровнем упорядоченности. Из этого вытекают два вывода. Во-первых, чтобы соотноситься с мышлением (как мой мозг соотносится с моей мыслью), физическая организация должна быть крайне упорядоченной, и это означает, что происходящие в ней события должны с высокой точностью подчиняться строгим физическим законам. Во-вторых, физические впечатления, которые производят на эту физически организованную систему внешние тела, очевидно, соотносятся с восприятием и опытом соответствующей мысли, формируя ее материал, как я выразился. Физические взаимодействия нашей системы с другими должны, как правило, сами обладать определенной степенью физической упорядоченности, то есть с определенной точностью подчиняться строгим физическим законам.
Почему же все это недостижимо для организма, состоящего из ограниченного числа атомов и способного ощутить воздействие одного или нескольких атомов?
Потому что мы знаем, что атомы постоянно находятся в неупорядоченном тепловом движении, которое, так сказать, противоречит упорядоченному поведению и не дает событиям, реализуемым небольшим числом атомов, соответствовать известным законам. Лишь в случае соединения невероятно большого числа атомов начинают действовать статистические законы, и они контролируют поведение этих скоплений с точностью, возрастающей вместе с ростом числа атомов. Именно таким образом события приобретают черты настоящей упорядоченности. Все физические и химические законы, играющие важную роль в жизни организмов, являются статистическими. Любой другой вид закономерности и упорядоченности нарушается и сводится на нет непрерывным тепловым движением атомов.
Позвольте проиллюстрировать это несколькими примерами, выбранными наугад из тысяч им подобных и потому, возможно, не самыми лучшими для читателя, который впервые слышит о таком положении вещей, – положении, столь же фундаментальном в современной физике и химии, как, например, клеточное строение организмов в биологии, или закон Ньютона в астрономии, или даже последовательность целых чисел – 1, 2, 3, 4, 5… – в математике. Следующие страницы вряд ли помогут новичку полностью понять и оценить предмет обсуждения, который связан с блистательными именами Уилларда Гиббса[8] и Людвига Больцмана[9] и обсуждается в учебниках в разделе «статистическая термодинамика».
Если заполнить вытянутую кварцевую трубку газообразным кислородом и поместить в магнитное поле, газ намагнитится. Я выбрал газ, поскольку случай с ним проще, чем с твердым веществом или жидкостью. Тот факт, что намагничивание в данном случае будет крайне слабым, не повлияет на теоретические рассуждения. Намагничивание происходит потому, что молекулы кислорода представляют собой маленькие магниты и ориентируются параллельно полю, как стрелка компаса. Но не думайте, будто они все выстраиваются параллельно. Удвоив силу поля, вы получите в вашем сосуде с кислородом двойную намагниченность, и она будет пропорционально возрастать по мере приближения к экстремально сильным полям.
Рис. 1. Парамагнетизм
Это наглядный пример чисто статистического закона. Ориентации, вызванной полем, постоянно противостоит тепловое движение, приводящее к произвольной ориентации. Результатом этой борьбы является незначительное преобладание острых углов между осью диполя и полем над тупыми углами. Ориентация отдельных атомов непрерывно меняется, однако в среднем, благодаря своему огромному количеству, они дают постоянное небольшое преобладание ориентации в направлении поля, пропорциональное этому полю. Этим блистательным объяснением мы обязаны французскому физику П. Ланжевену