Каким бы ни было невероятным разнообразие клеток, для меня самое интересное то, что всех их объединяет. Ученых всегда интересуют основные единицы, лучшим примером служит атом как основная единица материи. В биологии эквивалент атома – клетка. Клетки – не только основная структурная единица всех живых организмов, они еще и основная функциональная единица жизни. Я имею в виду, что клетки – наименьшие объекты, обладающие главнейшими характеристиками жизни, основа того, что биологи называют клеточной теорией: насколько нам известно, все живое на планете либо представляет собой клетку, либо состоит из группы клеток. Клетка – наипростейшая вещь, о которой можно уверенно сказать, что она живая.
Клеточной теории уже около полутора сотен лет, она стала одним из краеугольных камней биологии. Учитывая значимость этой идеи, меня удивляет, что она так мало занимает воображение людей – вероятно, потому, что на уроках биологии школьников приучают думать о клетках просто как о строительных кирпичиках для более сложных существ, тогда как в реальности все намного интересней.
История клетки начинается в 1665 г. с Роберта Гука, члена незадолго до того созданного Лондонского королевского общества, одной из первых академий наук в мире. Как часто происходит в науке, открытию способствовало появление новой технологии. Поскольку большинство клеток невозможно увидеть невооруженным глазом, их обнаружения пришлось дожидаться, пока в начале XVII в. не был изобретен микроскоп. Ученые часто сочетают в себе теоретика и искусного ремесленника, это полностью справедливо в случае Гука, он в равной степени свободно чувствовал себя в физике, архитектуре или биологии, поскольку изобретал научные приборы.
Он конструировал микроскопы собственного изобретения и затем с их помощью исследовал странные миры, не видимые невооруженным глазом.
В числе других вещей Гук рассматривал тонкий срез коры пробкового дерева. Он обнаружил, что пробковая древесина состоит из рядов окруженных стенками полостей, очень похожих на концы корней лука, которые 300 лет спустя увидел я, учась в школе. Гук назвал их cells (от латинского слова cella, что значит «комнатка» или «келья»). В те времена Гук не знал, что зарисованные им клетки были, в сущности, основным компонентом не только растений, но и всего живого.
Спустя недолгое время после Гука голландский исследователь Антони ван Левенгук сделал другое важное наблюдение, открыв одноклеточную жизнь. Он обнаружил микроскопические организмы плавающими в пробах воды из пруда и развивающимися в налете, который он соскреб со своих зубов, что, надо сказать, его порядком расстроило, так как он гордился гигиеной полости рта! Он дал этим крохотным существам ласковое имя, которым мы сегодня не пользуемся, – animalcules («маленькие животные»). Те, кого он нашел благоденствующими в собственном рту, были, по сути, первыми описанными бактериями. Левенгук обнаружил целую новую область крохотных одноклеточных живых организмов.
Теперь мы знаем, что бактерии и другие виды микробных клеток (микробами принято называть все микроскопические организмы, способные жить в виде одиночных клеток) представляют собой самую распространенную форму жизни на Земле. Они населяют любую среду обитания от высоких слоев атмосферы до глубин земной коры. Без них жизнь остановилась бы. Они разлагают отходы, создают почву, возвращают в повторный цикл питательные вещества и поглощают из воздуха азот, необходимый для роста растений и животных. А когда ученые оглядываются на свое тело, они видят, что на все до единой из наших 30 или более триллионов человеческих клеток приходится по крайней мере одна микробная клетка. Вы, как и любой другой человек, не изолированный, отдельный объект, а огромная и постоянно изменяющаяся колония, состоящая из человеческих и нечеловеческих клеток. Эти клетки микроскопических бактерий и грибов живут на нас и в нас, влияя на то, как мы перевариваем пищу и боремся с болезнями.
Но до XVII в. никто не имел понятия даже о том, что эти невидимые клетки существуют, не говоря уж о том, что они функционируют по тем же основным принципам, что и другие лучше видимые живые формы.
В XVIII и в начале XIX в. методы и инструменты микроскопии усовершенствовались, и очень скоро ученые стали идентифицировать клетки у любых типов различных существ. Начали строить догадки о том, что все животные и растения созданы из тех групп простейших, обнаруженных Левенгуком несколько поколений назад. Затем, после долгого периода вызревания, была наконец рождена клеточная теория. В 1839 г. ботаник Маттиас Шляйден (Шлейден) и зоолог Теодор Шванн обобщили результаты собственной работы и выводы других исследователей и написали: «Мы увидели, что все организмы состоят из подобных по своей сути частей, а именно клеток». Наука добралась до вносящего ясность вывода, что клетка суть фундаментальная структурная единица жизни.
Эта проницательная догадка получила даль нейшее продолжение, когда биологи осознали, что каждая клетка представляет собой самостоятельный живой организм. Эту идею выразил основоположник клеточной патологии Рудольф Вирхов, написавший в 1858 г.: «Все животные появляются на свет как совокупность жизненно важных единиц, каждая из которых несет в себе полный набор характеристик жизни».
Это означает, что все клетки сами по себе живые. Самым наглядным образом это демонстрируется биологами, когда они берут клетки из многоклеточных тел животных или растений и сохраняют их живыми в стеклянных или пластиковых емкостях, чаще всего в тех, что имеют плоское дно и называются чашками Петри. Некоторые из этих клеточных линий выращиваются в лабораториях по всему миру десятилетиями кряду, давая исследователям возможность изучать биологические процессы, избегнув трудностей работы с организмами целиком. Клетки активны; они могут двигаться и реагировать на окружение, их содержимое постоянно находится в движении. В сравнении с целым организмом типа животного или растения клетка может казаться простой, но она явно живая.
Однако в клеточной теории, первоначально сформулированной Шляйденом и Шванном, имелся существенный пробел. Она не говорила о том, как возникают новые клетки. Пробел закрыли, когда учеными было признано, что клетки воспроизводятся делением одной клетки надвое, и был сделан вывод, что клетки могут возникать исключительно делением изначальной клетки надвое. Вирхов популяризировал эту идею с помощью латинской эпиграммы Omnis cellula e cellula, то есть «все клетки возникают из клеток». Фраза эта также помогла противостоять ошибочной идее, в то время еще довольно распространенной, что жизнь спонтанно возникает из косной материи – но это не так.
На делении клеток основан рост и развитие всех живых организмов. Это первый, критически важный этап преобразования одиночной, однородной оплодотворенной яйцеклетки в клубок клеток и затем в итоге в очень сложно организованное живое существо – эмб рион. Все начинается с момента, когда клетка делится и производит две клетки, которые могут иметь разную идентичность. Все последующее развитие эмбриона основано на том же процессе – повторяющиеся циклы деления клеток с дальнейшим созданием еще более сложно структурированного эмбриона по мере того, как клетки развиваются во все более специализированные ткани и органы. Из этого следует, что все живые организмы, независимо от размеров и сложности, возникают из одной клетки. Мне думается, что нам стоит относиться к клеткам с большим уважением, если вспомним, что каждый из нас когда-то был одиночной клеткой, образованной в момент зачатия при слиянии сперматозоида и яйцеклетки.
Делением клетки объясняется также кажущаяся чудодейственной способность тела заживлять раны и исцеляться. Если вы пораните палец краем этой страницы, то вокруг пореза начнется местное деление клеток, чтобы заживить ранку и сохранить здоровье. А вот онкологические заболевания, на беду, вступают в диссонанс со способностью тела стимулировать новые циклы клеточного деления. Рак вызывается бесконтрольным ростом и делением клеток, могущих распространять злокачественность, наносить урон или даже убить тело.
Рост, способность к восстановлению, дегенерация и злокачественные новообразования – все это связано с изменениями свойств наших клеток в болезни и в здоровье, в юности и в старости. В сущности, можно отследить истоки большинства болезней из нарушения функционирования клеток, а определение неисправностей в клетках ложится в основу разработки новых методов лечения.
Клеточная теория, как и прежде, влияет на пути развития науки о жизни и на медицинскую практику. Она в огромной мере повлияла и на историю моей жизни. С той самой поры, когда я разглядел в микроскоп клетки корней пресловутой луковицы, меня интересовали и клетки, и то, как они функционируют. Когда я занялся биологическими исследованиями, то решил изучать клетки, в частности как они воспроизводят себя и контролируют деление.
Клетки, с которыми я начал работать в 1970-х гг., были дрожжевыми. Большинство из нас думает, что дрожжи годятся только для виноделия, пивоварения и хлебопечения, отнюдь не для того, чтобы браться за фундаментальные проблемы биологии. Но, по сути, они представляют великолепную модель для того, чтобы понять, как действуют клетки более сложно устроенных организмов. Дрожжи – это грибы, но их клетки удивительно похожи на клетки растений и животных. К тому же они малы, сравнительно просты, быстро растут и не требуют дорогостоящих питательных веществ. В лаборатории мы их выращиваем, либо опуская в жидкий бульон, где они свободно плавают, либо на слое желеобразной питательной среды в пластиковой чашке Петри, где они образуют колонии кремового цвета диаметром несколько миллиметров, в каждой из которых находится много миллионов клеток. Несмотря, а точнее говоря, благодаря их простоте дрожжи помогли нам выяснить, как делятся клетки в большинстве живых организмов, включая и человеческие тела. Многое из того, что нам известно о неконтролируемом делении раковых клеток, было впервые получено при изучении простеньких дрожжей.