Одной из начальных подсказок стало открытие микроскопических структур в клетках, похожих внешне на тонкие нити. Первым их обнаружил в 1870-е гг. немецкий военный врач, ставший клеточным биологом, по имени Вальтер Флемминг. С помощью лучших современных на тот период микроскопов он смог описать интригующее поведение данных микроскопических нитей. Флемминг увидел, что, когда клетка была готова к делению, нити расщеплялись пополам в продольном направлении и становились короче и толще. Затем, когда клетка делилась надвое, нити отделялись друг от друга, и одна половина оказывалась в каждой из вновь сформированных дочерних клеток.
То, что увидел, но не понял в то время Флемминг, было материальным воплощением генов, предполагаемых менделизмом передающихся по наследству частиц. То, что Флемминг назвал нитями, мы сегодня называем хромосомами. Хромосомы – это физические структуры, которые есть во всех клетках, содержащих гены.
Примерно в то же время еще одна крайне важная подсказка в отношении генов и хромосом возникла из совсем необычного источника: оплодотворенных яиц нематод, или паразитических круглых червей. В ходе тщательного исследования самых ранних стадий развития нематод бельгийский биолог Эдуард ван Бенеден увидел через микроскоп, что первая клетка вновь образованного зародыша содержит ровно четыре хромосомы – по две от женской и мужской половой клетки.
Это точно совпало с предсказаниями менделевской теории – две группы парных генов, сошедшихся в момент оплодотворения. С того времени результаты ван Бенедена были подтверждены множество раз. Одна половина хромосом находится в мужской половой клетке, а вторая в яйцеклетке, и полный набор генетического материала формируется, когда они сливаются, чтобы получить оплодотворенную яйцеклетку. Сегодня мы знаем, что принципы полового размножения нематод верны также и для всех эукариотических организмов, в том числе и для нас, человеческих существ.
Число хромосом широко варьируется: в каждой клетке растения гороха их 14, у нас 46, а в клетках бабочки Polyommatus atlantica более 400. Ван Бенедену повезло, что у нематод их всего четыре. Было бы больше, сосчитать было бы труднее. Благодаря пристальному изучению сравнительно простого случая круглых червей ван Бенедену удалось краешком глаза увидеть универсальную истину о генетическом наследовании. Однозначно интерпретируемый эксперимент с простой биологической системой способен привести к догадке о том, как в целом организована жизнь. Именно по этой причине большую часть своей жизни исследователя я посвятил простым в строении и легким в изучении клеткам дрожжей, а не более сложно устроенным человеческим клеткам.
Совместный анализ открытий Флемминга и ван Бенедена позволил сделать вывод о том, что хромосомы передают гены между поколениями как делящихся клеток, так и организмов в целом. Не считая немногих особых исключений типа красных кровяных клеток, по мере созревания утрачивающих все свое ядро и, следовательно, все свои гены, любая клетка вашего тела содержит копию всего вашего набора генов. Эти гены в совокупности играют важную роль, руководя процессом развития полностью сформированного тела из одной-единственной оплодотворенной яйцеклетки. И на протяжении всего срока жизни каждого живого организма гены предоставляют клетке важную информацию, которая им нужна для роста и поддержания жизнедеятельности. Отсюда, таким образом, следует, что каждый раз, когда клетка делится, весь набор генов должен копироваться и поровну распределяться между двумя вновь образованными клетками. Поэтому деление клеток можно назвать основополагающим примером биологического воспроизводства.
Другой огромной задачей, вставшей перед биологами, было выяснение того, что же на деле представляют собой гены и как они действуют. Первый большой прорыв случился в 1944 г., когда небольшая группа ученых в Нью-Йорке во главе с микробиологом Освальдом Эвери провела эксперимент, в ходе которого было установлено, из какого материала состоят гены. Эвери и его коллеги изучали бактерии, вызывающие пневмонию.
Им было известно, что безвредные штаммы этих бактерий, смешиваясь с остатками мертвых клеток вирулентного штамма, способны превращаться в опасные, вирулентные виды. Принципиально важно то, что данное изменение было наследуемым; став вирулентными, бактерии передавали это свойство всему своему потомству. Тогда Эвери сделал вывод, что ген или гены передавались в виде химического соединения из останков мертвых опасных бактерий к живым безвредным бактериям, навсегда изменяя их природу. Он понял, что, если ему удастся обнаружить часть мертвых бактерий, отвечающую за это генетическое преобразование, он в итоге сможет продемонстрировать всем и вся то, из чего состоят гены.
Оказалось, что это было вещество, называемое дезоксирибонуклеиновой кислотой, скорее всего известной вам в виде аббревиатуры ДНК, которое и обладало ключевым преобразующим свойством. К тому времени уже было известно, что хромосомы, переносящие гены в клетках, содержат ДНК, но большинство биологов считали, что ДНК – слишком простая и заурядная молекула, чтобы отвечать за столь сложный феномен, как наследственность. Они заблуждались.
Каждая из ваших хромосом имеет в своей основе одну цельную молекулу ДНК. Хромосомы могут быть чрезвычайно длинными и содержащими сотни, а то и тысячи генов друг за другом в цепочке. К примеру, человеческая хромосома номер 2 содержит цепочку из более 1300 генов, а если растянуть этот кусок ДНК, он протянется более чем на 8 сантиметров. Отсюда получаются удивительные статистические данные: 46 хромосом в ваших крохотных клетках вместе составят более 2 метров ДНК. В результате чудес упаковки все это размещается в клетке диаметром всего в несколько тысячных миллиметра. А еще восхитительней то, что, если каким-то образом соединить и потом растянуть все ДНК, свернутые в нескольких триллионах клеток вашего тела, в одну тонкую нить, длина ее составит порядка 20 миллиардов километров. Этого хватит, чтобы протянуть ее от Земли до Солнца и назад шестьдесят пять раз!
Эвери был довольно скромным человеком и не трубил во всеуслышание о своем открытии, при этом ряд биологов подверг критике его выводы. Однако он оказался прав: гены состоят из ДНК. Когда в конце концов правда улеглась в сознании, она ознаменовала собой рождение новой эпохи генетики и биологии в целом. Наконец гены были признаны химическими соединениями: устойчивыми объединениями атомов, подчиняющимися законам физики и химии.
Но на практике о явлении прекрасной новой эры возвестила в 1953 г. расшифровка структуры ДНК. Большинство важных открытий в биологии основываются на работе множества ученых, которые годами или десятилетиями продираются сквозь природу вещей, чтобы постепенно добраться до самой сути. Впрочем, порой впечатляющие озарения случаются гораздо быстрее. Так произошло со структурой ДНК. За считаные месяцы трое ученых из Лондона – Розалинд Франклин, Рэймонд Гослинг и Морис Уилкинс – провели критически важные эксперименты, и затем Фрэнсис Крик и Джеймс Уотсон в Кембридже дали интерпретацию полученных данных и расшифровали структуру ДНК. Более того, они быстро уяснили значение своих выводов для биологии.
Спустя годы я довольно близко познакомился с обоими, уже постаревшими Криком и Уотсоном. Они резко отличались друг от друга. Фрэнсис Крик обладал острым как бритва, логическим и проницательным умом. Он расчленял задачи на тончайшие слои так, что они буквально плавились под его взором.
У Джеймса Уотсона была поразительная интуиция, он строил умозаключения там, где другие не видели никакой связи, хотя и не всегда было понятно, как у него это выходит. Оба были уверенными в себе и резкими в высказываниях, и хотя порой бывали критически настроенными, но при этом всегда готовыми к диалогу с молодыми учеными. Они замечательно дополняли друг друга.
Подлинная красота предложенной ими двойной спирали ДНК заключается не в элегантности изящной винтообразной структуры, а скорее в том, как структура разъясняет собою те два главных принципа, благодаря которым наследственный материал служит фундаментом сохранения и продления жизни до бесконечности. Первое: ДНК должна кодировать информацию, необходимую клеткам и всему организму для собственного роста, поддержания жизнеспособности и репродукции. Второе: она должна обладать возможностью точного и надежного самовоспроизведения, с тем чтобы каждая новая клетка, каждый новый организм могли унаследовать полный набор генетических инструкций.
Спиралевидная структура ДНК, которую можно представить в виде скрученной веревочной лесенки, несет в себе обе эти важнейшие функции. Давайте посмотрим на то, каким образом генетическая информация заключена в структуре ДНК. Каждая ступенька лесенки состоит из связанных между собой пары химических молекул, называемых основаниями или нуклеотидами. Существуют четыре разных типа нуклеотидов, сокращенно называемых A (аденин), T (тимин), G (гуанин) и C (цитозин). Порядок, в котором эти четыре нуклеотида появляются в каждой из двух цепочек, или нитей лесенки, ДНК, представляет собой информационный код. Это можно сравнить с тем, как смысл речи передается при помощи упорядоченной последовательности букв, составляющих фразу, которую вы сейчас читаете. Каждый ген представляет собой определенный фрагмент кода ДНК, содержащий сообщение для клетки. Такое сообщение может быть инструкцией, например, к выработке пигмента, обусловливающего цвет глаз человека, пурпурного цвета цветка гороха, или к тому, чтобы бактерия пневмонии стала более вирулентной. Клетка получает эти послания ДНК, «считывая» генетический код и запуская информацию в работу.
Далее нужно получить точные копии ДНК, чтобы вся информация в генах надлежащим образом передавалась от одного поколения клеток или организмов к последующему. Форма и химические свойства двух оснований, составляющих каждую из лестничных ступенек, таковы, что нуклеотиды образуют пары лишь определенным образом. Аденин (A) может соединяться только с тимином (T), гуанин (G) только с цитозином (C). Отсюда следует, что, если вам известен порядок нуклеотидов на одной нити ДНК, вам тут же станет ясен порядок нуклеотидов на другой. И следовательно, если вы разобьете двойную спираль на две нити, каждая из них будет служить шаблоном для воссоздания идеальной копии первоначальной партнерской нити. Как только Крик и Уотсон разглядели такое построение, они поняли, что это и есть способ, которым клетки копируют ДНК, создавая хромосомы и из них – свои гены.