Чудесные кристаллы — страница 5 из 12

Частицы воздуха при этом не перемещаются. Они только колеблются, смещаясь вперед и назад на небольшое расстояние. Это колебательное движение передается частицам вещества все дальше и дальше, пока звук не достигнет нашего уха.

Итак, звук — это колебания мельчайших частиц среды, в которой находится источник звука. В этом природа всех без исключения звуков.

В нашем примере источником звука была струна. Однако им может быть и любое другое колеблющееся тело. Если такой источник звука, например колеблющуюся стальную пластинку, поместить в воду, то в воде тоже возникнет звуковая волна. Она также является результатом колебательного движения частиц, но теперь уже частиц воды (рис. 15).

Звук в различных веществах распространяется с разной скоростью. В воздухе — со скоростью примерно 330 метров в секунду, а в воде около 1,5 километра в секунду. Еще быстрее распространяется звук в твердых телах.

В природе существует бесчисленное количество звуков, но очень многие из них человек не слышит. Дело в том, что человеческое ухо воспринимает звуки с частотой от 16 до 18 000—20 000 колебаний в секунду (герц).

Звуки с частотой свыше 20 000 герц называются ультразвуками. Их часто называют еще неслышимыми звуками, потому что они не воспринимаются человеческим ухом. Не слышим мы и звуки, частота которых ниже 16 герц — это инфразвуки.

В природе человек часто сталкивается с явлением эха. Оно наблюдается в горах при отражении звуковых волн от скал, в лесу при отражении от его границ, в городах при отражении звука от стен больших зданий. Явление эха возникает и в воде.


Рис. 15. Помещенная в воду колеблющаяся стальная пластинка является источником звуковых волн

Теперь понятно, почему Поль Ланжевен обратился к звуковым явлениям. Ведь, во-первых, звук в воде распространяется на большие расстояния, а во-вторых, с помощью отраженных эхо-сигналов можно определить расстояние до погруженной подводной лодки.

Конечно, способ измерения расстояний при помощи эха был известен давно. Его пытались использовать для обнаружения различных препятствий, с которыми мог столкнуться корабль. Такие работы начались после того, как в 1912 году весь мир был потрясен ужасной катастрофой — океанский пароход «Титаник» столкнулся с айсбергом и за несколько минут пошел ко дну вместе с тысячами пассажиров. Именно тогда ученые стали конструировать звуковые приборы для обнаружения подводных препятствий.

В качестве источника звука применяли пакет взрывчатого вещества, создававший в воде звуковые волны (рис. 16). Предлагались и другие виды источников звука. Но все они имели один недостаток: излучение звука происходило равномерно во все стороны. А это означало, что нельзя было установить направление, в котором находилось препятствие, отразившее звук. Кроме того, звуковые волны, создаваемые этими источниками, отражались только от больших подводных препятствий — крупных льдин, берега, дна. Нечего было и думать об обнаружении такой маленькой цели, как подводная лодка.


Рис. 16. Обнаружение подводных препятствий при помощи ненаправленных источников звука

Необходимо было найти новый источник, который бы посылал и принимал волны узким пучком в нужном направлении подобно тому как прожектор направляет луч света. Таким источником мог быть только ультразвуковой излучатель.

Но каким образом создать ультразвуковые волны в воде?

После долгих исканий ученые остановились па источнике ультразвуковых волн, главной частью которого была пьезокварцевая пластинка.

Если к электродам кварцевой пластинки подключить источник переменного электрического тока, то пластинка будет сжиматься и разжиматься, т. е, колебаться с частотой электрического тока источника. Колебаний пластинки передаются среде, в результате чего возникает звуковая волна. Если частота переменного электрического тока свыше 20 000 герц, то кварцевая пластинка будет излучать ультразвуки. В этом и заключается принцип работы пьезоэлектрического излучателя.

Так кропотливая и настойчивая работа ученых привела к созданию приборов, играющих немаловажную роль в современной войне на море. Вместе с тем эти работы положили начало практическому применению пьезоэлектричества. Бывшее в течение десятков лет «научным курьезом», не имеющим какой-либо практической ценности, пьезоэлектричество получило путевку в жизнь.

ПЬЕЗОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ

Чтобы обнаружить подводное препятствие, нужно не только излучить ультразвук, но и принять отразившееся эхо. Отраженная волна, встретив на своем пути кварцевую пластинку, воздействует на нее, в результате чего пластинка будет сжиматься и разжиматься. На противоположных электродах попеременно появятся разноименные заряды, которые после усиления и преобразования подаются на индикаторные приборы.

Устройство, позволяющее преобразовать энергию электрического тока в звуковую энергию и, наоборот, звуковую энергию в энергию электрического тока, принято называть акустическим преобразователем. Если при этом используется пьезоэлектрический эффект, то преобразователь называется пьезоэлектрическим.

Пьезоэлектрические преобразователи нашли широкое применение в гидроакустических приборах различного назначения. Чаще всего это либо приемники, служащие только для приема звуковых или ультразвуковых колебаний, либо излучатели, служащие для создания звуковых или ультразвуковых волн.

Однако в ряде гидроакустических приборов, сконструированных для обнаружения подводных лодок, для излучения колебаний и приема отраженных эхосигналов используется один и тот же преобразователь или, как его обычно называют, вибратор. Для переключения преобразователя с передачи на прием применяется специальное коммутационное устройство,

Маленькая кварцевая пластинка не могла создать колебания большой мощности. Чтобы увеличить дальность распространения ультразвука, излучатель должен быть больших размеров. В распоряжении же ученых были небольшие встречающиеся в природе кристаллы кварца.


Рис. 17. Кварцевая мозаика

Выход был найден. На стальной лист, служивший одним из электродов преобразователя, наклеили мозаику из кварцевых пластинок (рис. 17).

Пьезоэлектрическая мозаика набирается из большого числа пластинок как правильной, так и неправильной формы. При этом очень важно, чтобы пластинки плотно прилегали друг к другу.

При наборе мозаики все пластинки должны иметь одинаковую полярность. Это означает, что если сжать мозаику, то на всех пластинках на поверхности, обращенной в одну сторону, должны появиться одноименные заряды. Если же полярность пластинок перепутать, то на одних пластинках возникнут положительные заряды, а на других — отрицательные. Эти заряды будут компенсировать друг друга, и пьезоэффекта не произойдет. Поэтому еще до сборки мозаики на специальном приборе определяют полярность каждой пластинки.

В отличие от излучателя в приемнике не требуется создавать мощных звуковых или ультразвуковых колебаний. Поэтому пьезоэлектрический приемник обычно небольших размеров. Зато в приемниках используются самые чувствительные пьезокристаллы (сегнетова соль, титанат бария). Чем выше чувствительность приемника, тем меньший по силе звук может быть принят.

Пьезоэлектрический приемник состоит из мембраны, на внутренней стороне которой набирается столбик из тонких пьезоэлектрических пластинок. Между пластинками прокладываются электроды из тонкой металлической фольги. Столбик вместе с мембраной вставляется в металлический корпус и плотно зажимается в нем (рис. 18).


Рис. 18. Сегнетоэлектрический приемник

Механические колебания среды воздействуют на мембрану приемника, в результате чего на электродах образуются электрические заряды. Электроды, на которых возникают одноименные заряды, соединены между собой. Общие концы проводов, идущих от электродов, выводятся через сальник к усилителю.

Наряду с пьезоэлектрическими в настоящее время применяются магнитострикционные преобразователи. Магнитострикция — явление, сходное с пьезоэлектричеством.


Рис. 19. Магнитострикционный излучатель

Некоторые металлы, например никель, нержавеющая сталь и отдельные сплавы, обладают способностью при намагничивании изменять свои размеры. Это свойство и называется магнитострикцией.

Магнитострикционные преобразователи имеют вид сплошных или полых стержней с обмоткой, в которой течет переменный ток нужной частоты. Часто тело самого стержня набирается из тонких изолированных друг от друга пластин (рис. 19).

Магнитострикционные преобразователи применяются в тех случаях, когда нужно получить ультразвук сравнительно низких частот, приближающихся к частоте слышимых звуков. Для получения же высокочастотных ультразвуковых волн наиболее эффективны пьезоэлектрические излучатели. Для приема ультразвуковых колебаний также более удобно применять пьезоэлектричество. По сравнению с магнитострикционными пьезоэлектрические приемники гораздо чувствительнее. Поэтому часто делают комбинированные приемо-излучающие системы. Излучатель в таких системах магнитострикционный, а приемник пьезоэлектрический.

ШУМОПЕЛЕНГАТОРЫ

С установкой на надводных кораблях гидролокаторов, способных обнаружить подводные лодки в погруженном состоянии, соперничество между надводными кораблями и подводными лодками не прекратилось. Теперь вопрос стоял так: кто кого раньше обнаружит. Если корабль будет обнаружен первым, то подводная лодка сможет своевременно уклониться и избежать атаки. Более того, учитывая, что дальность действия гидролокатора ограничена; подводная лодка смогла бы еще до обнаружения ее применить смертоносные торпеды по кораблю противника.

Перископ, долгое время бывший основным и единственным средством наблюдения на подводной лодке, не позволял решить этих задач. Применение перископа демаскировало подводную лодку и лишало ее основного преимущества — скрытности. К тому же перископом нельзя было пользоваться при плохой видимости — ночью, в тумане, при густом снегопаде или дожде.