Диалоги о математике — страница 2 из 18

Первичные математические представления были в обиходе у людей на самых ранних стадиях развития человеческого общества. Смутные, неоформившиеся понятия «больше», «меньше», «равно», относящиеся к конкретным предметам, представления о кратчайшем расстоянии между двумя точками, выработанные в результате длительного каждодневного опыта, вооружали первобытного человека полезными сведениями. Вероятно, представления о неравенстве числа предметов, неравенстве расстояний и размеров появились у людей раньше, чем представления о числе предметов. Формирование идеи счета в пределах единиц относится к тому периоду истории человечества, от которого не сохранилось никаких письменных памятников. Это вполне естественно, так как речь, искусство счета, первичные навыки мышления относятся к временам гораздо более ранним, чем появление самой несовершенной письменности. Судить о развитии математических понятий на ранней стадии человеческого общества удается лишь на основе косвенных данных — наблюдений над некоторыми племенами в XVI–XIX вв., изучения особенностей живых и мертвых языков, являющихся не только средством общения, но и памятником духовной культуры прошлого.

Хозяйственные потребности вынуждали людей совершенствовать правила счета, измерения расстояний, а также расширять объем математических понятий. Однако в течение долгого времени накопленные сведения были и какой-то мере рецептурными и не осознавались как самостоятельная ветвь знаний. Интересно отметить, что на этой ступени развития математические сведения различных народов, даже не общавшихся между собой, поразительно близки по форме и по содержанию. Правила вычисления площадей и объемов Древнего Вавилона и Древнего Египта весьма похожи на аналогичные правила Древнего Китая. Свойство сторон прямоугольного треугольника, известное под названием теоремы Пифагора, было найдено для многих частных случаев треугольников с целочисленными сторонами задолго до Пифагора, еще в Древнем Вавилоне и в Древнем Китае. На этот вопрос дан вразумительный ответ в беседе Сократа с Гиппократом (первый диалог Реньи).

Так в течение тысячелетий многочисленными безвестными тружениками закладывался фундамент современной математики. Постепенно люди научились выполнять арифметические действия с целыми числами, а затем и с рациональными дробями, научились правильно вычислять площади довольно сложных фигур и объемы простейших тел, Уже в ту пору люди изобрели вспомогательные средства; для упрощения взаимных расчетов. Пусть эти изобретения очень примитивны, но их создание стало важным элементом человеческой культуры. И если теперь человечество знает гораздо больше и мечтает о решении проблем, которые совсем недавно казались фантастическими, то в этом велика заслуга предшествующих поколений, на опыте которых базируются все наши знания.

Примитивный математический аппарат счета и измерения, вызванный к жизни несложными потребностями охотника, скотовода, земледельца и воина тех далеких времен, оказался явно недостаточным, когда начала развиваться астрономия и далекие путешествия потребовали разработки методов ориентации в пространстве. Жизненная практика, в том числе и практика развивающихся естественных наук, стимулировала дальнейшее развитие математики. И действительно, в течение каких-нибудь двухсот лет в Древней Греции был сделан принципиально новый шаг — математика стала формироваться как дедуктивная наука. Из сборника рецептов, которыми следовало пользоваться в тех или иных житейских ситуациях, она превратилась в логически стройную систему научных знаний. В культурном развитии человечества произошел скачок, равный которому трудно найти на протяжении всей истории научных знаний. В первом диалоге Реньи математика находится на довольно высоком логическом уровне и истоки математических понятий уже не так ясны.

Интересно отметить, что крупнейший прогресс математики в Древней Греции не замедлил сказаться на математическом образовании. В Древнем Вавилоне и Древнем Египте математика преподавалась просто как система практических навыков, крайне важных для будущей работы государственного чиновника. В сохранившихся ученических «тетрадках» того времени нет даже намеков на вывод изучаемых математических правил: все основывалось на зазубривании определенной последовательности действий. Иное положение создалось в Древней Греции. Там были школы, в которых будущие ремесленники обучались математическим сведениям, необходимым для их повседневной деятельности, или, как выражался Платон, для «бытовых нужд». Существовали также школы, в которых математика изучалась как развитая в логическом отношении наука. Она, как писал Платон в своих диалогах, должна быть направлена на познание не «бытного», а «сущего». Человечество осознало важность математического познания как такового, безотносительного к задачам конкретной практики. Несомненно, что на такой подход оказали значительное влияние взгляды пифагорейцев, согласно которым законы природы выражаются числами. Именно к этому времени естественно отнести подразделение математики на «чистую» и «прикладную».

Предпосылки к новому бурному всплеску и последующему все возрастающему прогрессу математических знаний создала эпоха морских путешествий и развития мануфактурного производства. Эпоха Возрождения, давшая миру изумительный расцвет искусства, вызвала также развитие точных наук, в том числе и математики, появилось учение Коперника. Церковь яростно боролась с прогрессом естествознания. Именно к этому моменту приурочен третий диалог Реньи. Для математики этот период можно и должно считать началом многих важных событий. Прежде всего Галилео Галилей впервые поставил изучение движения на научные основы. Это было той искрой, от которой впоследствии вспыхнуло развитие математического анализа и всей современной математики. В значительной мере к Галилею следует отнести и начало изучения случайных явлений. В его трудах имеются далеко продвинутые идеи и результаты теории ошибок наблюдений, существенные для экспериментальных наук. К сожалению, до последнего времени историки науки проходили мимо этого факта.

Последние три столетия внесли в математику много новых идей и результатов, а также возможностей для более полного и глубокого изучения явлений природы, поэтому даже краткое их описание потребовало бы слишком много места. Содержание математики постоянно меняется. Это естественный процесс, поскольку по мере изучения природы, развития техники, экономики и других областей знания возникают новые задачи, для решения которых недостаточно прежних математических понятий и методов исследования. Возникает потребность в дальнейшем совершенствовании математической науки, расширении арсенала ее средств исследования.

Прикладная математика

Астрономы и физики раньше других поняли, что математические методы для них не только способы вычислении, но и один из основных путей проникновения в существо изучаемых ими закономерностей. В паше время математизация знаний совершает своеобразный победный марш. В результате многие науки и области знания, до самого последнего времени находившиеся вдали от использования математических средств, теперь усиленно стремятся наверстать упущенное. Причина такого внимания к математике, конечно, не в преходящей моде, а в том, что качественное изучение явлений природы, техники, экономики зачастую оказывается недостаточным. Как можно создать автоматически работающую вычислительную машину, если имеются только общие представления о длительности последействия передаваемых импульсов на элементы? Как можно автоматизировать процесс выплавки стали или крекинга нефти без знания точных количественных закономерностей этих процессов? Вот почему автоматизация вызывает дальнейшее развитие математики, оттачивание ее методов для решения огромного числа новых и трудных проблем.

Роль математики в развитии других наук и в практических областях деятельности человека невозможно установить на все времена. Изменяются не только те вопросы, которые требуют скорейшего разрешения, но и характер решаемых задач. Ленинский тезис об отсутствии абсолютного знания, о постепенном приближении наших сведений о природе к истинным закономерностям, господствующим в ней, относится и к математическому знанию. Создавая математическую модель реального процесса, мы неизбежно упрощаем его и изучаем лишь приближенную его схему. По мере уточнения наших знаний и выяснения роли ранее не учтенных факторов удается сделать более полным математическое описание процесса. Процедуру уточнения нельзя ограничить, как нельзя ограничить развитие самого знания. Математизация науки состоит не в том, чтобы исключить из процесса познания наблюдение и эксперимент. Они являются непременными составными частями полноценного изучения явлений окружающего нас мира. Смысл математизации знаний состоит в том, чтобы из точно сформулированных исходных предпосылок выводить следствия, доступные непосредственному наблюдению; с помощью математического аппарата не только описывать установленные факты, но и предсказывать новые закономерности, прогнозировать течение явлений, а тем самым получать возможность управления ими. Если эти предсказания оправдываются, теория укрепляет свое положение и продолжает дальнейшие выводы. Но рано или поздно, поскольку математическая теория того или иного реального явления всегда приближенна, обязательно наступает момент, когда какое-то следствие теории не подтверждается экспериментом или какой-то новый факт не объясняется теорией. Значит, математическая теория оказалась недостаточной. Необходим пересмотр исходных предпосылок теории, изменение положений, которые раньше казались незыблемыми. Такой пересмотр приводит к новой теории, способной шире и глубже проникнуть в структуру изучаемых явлений.

Математизация наших знаний состоит не только и не столько в том, чтобы использовать готовые математические методы и результаты, а в том, чтобы начать поиски того специфического математического аппарата, который позволил бы наиболее полно описывать интересующий нас круг явлений, выводить из этого описания новые следствия, чтобы уверенно использовать особенности этих явлений на практике. Так случилось в период, когда изучение движения стало насущной необходимостью, а Ньютон и Лейбниц завершили создание начал математического анализа. Этот математический аппарат до сих пор является одним из основных орудий прикладной математики. В наши дни разработка теории управления проце