ссами привела к ряду выдающихся математических исследований, в которых заложены основы оптимального управления детерминированными и случайными процессами.
Двадцатый век резко изменил представления о прикладной математике. Если раньше в арсенал средств прикладной математики входили арифметика и элементы геометрии, то восемнадцатый и девятнадцатый века добавили к ним мощные методы математического анализа. В наше время трудно указать хотя бы одну значительную ветвь современной математики, которая в той или иной мере не находила бы применений в великом океане прикладных проблем. По-видимому, разделение математики на прикладную и теоретическую потеряло смысл. Вероятно, не математика, а математики разделяются по своим интересам и творческой направленности на прикладников и теоретиков. Одни считают своей основной задачей преодоление трудностей, связанных с решением задач, которые не поддавались усилиям прежних поколений. Эти задачи интересуют их сами по себе, вне сйязи не только с прикладными вопросами, но и прогрессом математики в целом. Других волнует построение математики в ее основах. Они стремятся так отшлифовать центральные понятия математики, чтобы охватить ими возможно более широкий круг задач. Наконец, есть математики, для которых математика и ее методы существуют не ради самих себя, а в качестве орудия познания законов природы. Конкретная практическая задача для них — лишь источник размышлений; решая ее, они разрабатывают общие приемы, позволяющие освещать широкий круг различных вопросов. Такой подход особенно важен для прогресса науки. От этого выигрывает не только данная область приложений, но и все остальные, а в первую очередь — сама теоретическая математика. Именно такой подход к математике заставляет искать новые методы, новые понятия, способные охватить новый круг проблем, он расширяет область математических исследований. Последние десятилетия дают нам множество примеров подобного рода. Чтобы убедиться в этом, достаточно вспомнить появление в математике таких теперь центральных ее ветвей, как теория случайных процессов, теория информации, теория оптимального управления процессами, теория массового обслуживания, ряд областей, связанных с электронными вычислительными машинами.
Математик-прикладник обязан владеть существом реальной задачи, уметь выбрать математический инструмент, который лучше всего подходит к ней, а если такого инструмента еще не существует, то разработать его, построить разумную математическую модель изучаемого процесса, вывести из нее необходимые следствия и найти их истолкование. Настоящий математик-прикладник не может ограничиваться каким-либо одним методом и втискивать реальную проблему в известный ему математический аппарат; для каждой реальной проблемы он должен находить те математические средства, которые наиболее соответствуют ее природе. И прав Архимед, когда во втором диалоге говорит, что по сравнению с чистыми геометрами он сделал шаг дальше, указав также на нематематические следствия из теоремы о параболе.
Я убежден, что сейчас больше, чем когда бы то ни было, мы должны обратить внимание на воспитание молодых математиков, которые в математическом аппарате, в математических методах и в результатах приучились бы видеть не просто логически стройную систему знаний, но и возможности их использования для проникновения в тайны природы, управления техническими системами, лучшего использования материальных ресурсов. Очень важно — и это должно быть главной идеей математического образования, — чтобы возможно больше молодых математиков были способны сделать этот «следующий шаг», о котором говорит Архимед в книге Реньи.
По-видимому, впервые четко и ярко о математике как языке науки сказал почти четыреста лет назад великий Галилео Галилей: «Философия написана в грандиозной книге, которая открыта всегда для всех и каждого, — я говорю о природе. Но понять ее может лишь тот, кто научился понимать ее язык и знаки, которыми она написана. Написана же она на математическом языке, а знаки ее — математические формулы». Несомненно, что с тех пор наука добилась огромных успехов и математика была ее верной помощницей. Без математики многие успехи науки и техники были бы просто невозможны. Недаром один из крупнейших физиков современности В. Гейзенберг так охарактеризовал место математики в современной теоретической физике: «Первичным языком, который вырабатывают в процессе научного усвоения фактов, является в теоретической физике обычно язык математики, а именно математическая схема, позволяющая физикам предсказывать результаты будущих экспериментов»[1].
Для общения и для выражения своих мыслей люди создали величайшее средство — живой разговорный язык и письменную его запись. Язык не остается неизменным — он приспосабливается к условиям жизни, обогащается словарным запасом, вырабатывает новые средства для выражения тончайших оттенков мысли. И тем не менее в ряде случаев он оказывается непригодным. В различных областях человеческой деятельности вырабатываются как бы собственные языки, специально приспособленные для точного и краткого выражения мыслей, свойственных определенному виду деятельности. При выдаче рабочего задания на изготовление нового изделия никогда не ограничиваются только словесным описанием: для уточнения размеров, формы и иных особенностей изделия необходим еще чертеж. В какой-то мере чертеж является своеобразным языком, приспособленным для передачи той информации, которую должен сообщить исполнителю конструктор. Он не допускает разночтений и позволяет в наглядной форме передать большое количество сведений, необходимых для успешного выполнения работы. Эта форма общения несравненно удобнее обычной словесной, поскольку словесное описание мало-мальски сложного конструктивного задания было бы настолько громоздким, что в нем мог бы запутаться сам автор. Графическое задание прочтет любой специалист, даже не владеющий русским языком.
В науке особенно важна ясность и точность выражения мыслей. Язык науки не должен создавать дополнительных трудностей при восприятии сообщаемой информации. Без этого требования не может быть науки как системы знаний, не может быть уверенности в том, что определенное утверждение или предположение не было искажено в процессе рассуждений. Необходимо также предусмотреть все мыслимые исходы и не пропустить каких-либо, кроме рассмотренных, возможностей. Научное изложение должно быть кратким и вполне определенным. Именно поэтому наука обязана разрабатывать собственный язык, способный максимально точно передавать свойственные ей особенности. Прекрасно сказал известный французский физик Луи де Бройль: «…где можно применить математический подход к проблемам, наука вынуждена пользоваться особым языком, символическим языком, своего рода стенографией абстрактной мысли, формулы которой, когда они правильно записаны, по-видимому, не оставляют места ни для какой неопределенности, ни для какого неточного истолкования»[2]. Но к этому нужно добавить, что математическая символика не только не оставляет места для неточности выражения и расплывчатого истолкования — математическая символика позволяет вдобавок автоматизировать проведение тех действий, которые необходимы для получения выводов. В качестве иллюстрации рассмотрим следующий простой пример.
Пусть требуется решить задачу, которая формально сводится к решению системы линейных алгебраических уравнений. С помощью привычной алгебраической символики необходимые действия осуществляются очень просто. Нет нужды в каких-либо специальных рассуждениях: они выполнены раз навсегда для всех подобных систем. Применение набора стандартных правил позволяет без принципиальных затруднений довести решение каждой такой задачи до конца. Представим теперь, что мы лишены языка математических символов и в нашем распоряжении имеется только обычный словесный язык. В таком положении находятся, например, те, кто должен решать алгебраические задачи средствами элементарной арифметики. При этом немедленно возникают ненужные осложнения. Каждая задача становится особой проблемой и для нее нужно разрабатывать специальную систему рассуждений, самый простой вопрос требует серьезного умственного напряжения. Вспомним, как просто решаются сложные арифметические задачи, когда для их решения мы используем простейшую алгебраическую символику. А ведь это одна из простейших задач, с которыми приходится встречаться в науке, планировании, экономике пли инженерном деле.
Математическая символика позволяет сжимать запись информации, делать ее обозримой и удобной для последующей обработки. В последние годы появилась новая линия в развитии формализованных языков, связанная с вычислительной техникой и использованием электронных вычислительных машин для управления производственными процессами. Необходимо общение с машиной, надо предоставить ей возможность в каждый момент самостоятельно выбирать правильное в данных условиях действие. Но машина не понимает обычную человеческую речь, с ней нужно «разговаривать» на доступном ей языке. Этот язык не должен допускать разночтений, неопределенности, недостаточности или чрезмерной избыточности сообщаемой информации. В настоящее время разработано несколько систем языков, с помощью которых машина однозначно воспринимает сообщаемую ей информацию и действует с учетом создавшейся обстановки. Именно это и делает электронные вычислительные машины столь гибкими при выполнении сложнейших вычислительных и логических операций.
Не произойдет ли так, что математизация науки, использование формализованных символических языков приведет к отмиранию роли обычного языка в научных и практических работах? В действительности дело обстоит гораздо сложнее — у каждого языка есть сильные и слабые стороны. В результате каждая отрасль науки вынуждена использовать и обычный и символические языки. Чтобы проследить мысль автора во всех тонкостях, недостаточен только математический язык формул, необходим также текст, написанный или изложенный обычным языком. Язык формул не выводит нас за пределы записанных с их помощью понятий и представлений, он прекрасно приспособлен к получению следствий из предпосылок. Но на математическом языке невозможно проведение далеко идущих аналогий или неожиданных индуктивных выводов. Так его сила превращается в слабость. И здесь на помощь приходит обычный, неформализованный язык с его богатством оттенков и возможностей.