Гиппократ. Ты имеешь в виду, Сократ, что наш парадоксальный результат действительно правилен и можно иметь значительно более определенные знания о несуществующих вещах, например о математических понятиях, чем о реальных объектах? Мне кажется, теперь я понимаю, отчего так получается. Понятия, которые мы сами создали, известны нам полностью по самой их природе и мы можем о них узнать все, поскольку у них нет иной жизни, кроме как в нашем воображении. А вот объекты, существующие в реальном мире, не тождественны с нашими представлениями о них, поскольку они всегда неполны и приблизительны. Именно поэтому наши знания о действительно существующих вещах никогда не могут быть исчерпывающими или окончательными.
Сократ. Совершенно верно, дорогой мой друг, ты сказал лучше, чем смог бы это сделать я сам.
Гиппократ. Это твоя заслуга, Сократ, потому что ты помог мне понять эти вещи. Теперь я не только вижу, что Театет был совершенно прав, говоря, что я должен изучать математику, если хочу получить надежные знания, но и знаю, почему он был прав. Однако если уж ты так терпеливо разъяснял мне все до сих пор, то, прошу тебя, не покидай меня и теперь, потому что один мой вопрос, пожалуй наиболее важный, еще остался без ответа.
Сократ. Какой вопрос?
Гиппократ. Вспомни, Сократ, что я пришел просить твоего совета, должен ли я изучать математику. Ты помог мне попять, что математика и только математика может дать те основательные знания, которые я хотел бы иметь. Но какая польза от этих знаний? Ясно, что если получить некоторые знания о реальном мире, хотя бы неполные и не вполне определенные, то их значение будет несомненно и для отдельного человека и для страны в целом. Даже изучение звезд полезно, например, для мореплавателей. Но какая польза от изучения несуществующих предметов, которым как раз и занимается математика?
Сократ. Дорогой мой друг, я уверен, что ты знаешь ответ и только хочешь проверить меня.
Гиппократ. Клянусь Гераклом, я не знаю ответа. Помоги мне, прошу тебя.
Сократ. Согласен. Попытаемся найти его. Мы уже убедились, что математические понятия создаются самими математиками. Но выбирает ли математик эти понятия произвольно, как ему хочется?
Гиппократ. Я уже говорил тебе, что еще недостаточно знаю математику. Но мне кажется, математик гак же свободен в выборе объектов своего исследования, как поэт в выборе персонажей своих пьес, и как поэт наделяет своих персонажей чертами, которые ему приятны, так и математик вкладывает в понятия такие свойства, какие ему хочется.
Сократ. Но тогда существовало бы столько же математических истин, сколько самих математиков Как же ты объяснишь в таком случае то обстоятельство, что все математики изучают одни и те же понятия и проблемы? И почему нередко математики, живущие далеко один от другого и даже не знающие друг друга, открывают одни и те же истины и изучают одни и те же понятия? Если они говорят о числах, то имеют в виду одни и те же числа, а прямые, круги, квадраты, шары и правильные тела одинаковы для всех.
Гиппократ. Нельзя ли объяснить это тем, что все люди мыслят одинаковым образом и поэтому одни и те же вещи они представляют одинаково?
Сократ. Дорогой Гиппократ, мы получим удовлетворительное объяснение не раньше, чем рассмотрим предмет обсуждения со всех точек зрения. Как объяснить те нередкие факты, когда математики, живущие далеко друг от друга, скажем один в Тарепте, а другой на острове Самос, открывают одну и ту же истину, даже не зная один другого? И в то же время я никогда не слышал, чтобы два поэта написали одну и ту же поэму.
Гиппократ. Ия никогда не слышал об этом. Но вспоминаю, что Театет рассказывал мне об очень интересной открытой им теореме о несоизмеримых величинах. Он показал теорему своему учителю Теодору, а тот в свою очередь вытащил письмо от Архитаса, где было изложено то же доказательство, почти слово в слово.
Сократ. В поэзии это невозможно. Вот видишь, появилась новая проблема. Но продолжим. Как ты объяснишь, что математики разных стран обычно согласны по поводу математических истин, в то время как о государственных вопросах персы и спартанцы, например, имеют совершенно противоположные мнения, чем в Афинах, и, более того, даже между собой мы часто не соглашаемся друг с другом?
Гиппократ. Я отвечу на твой последний вопрос. В делах, касающихся государства, заинтересован каждый, и эти частные интересы иногда очень противоречивы. Вот почему трудно прийти к соглашению. А математик руководствуется просто стремлением найти истину.
Сократ. Ты хочешь сказать, чго математики пытаются найти истину, которая совершенно не зависит от их собственных интересов?
Гиппократ. Да.
Сократ. Но тогда мы ошибались, думая, что математики выбирают объекты своего изучения по собственному желанию. Выходит, объект их изучения имеет несколько форм существования, которые независимы от личности математика. Мы должны разрешить эту новую загадку.
Гиппократ. Я не знаю даже, с чего начать.
Сократ. Если у тебя еще осталось терпение, то попытаемся вместе. Скажи мне, что общего между мореплавателем, который ищет необитаемый остров, и живописцем, ищущим новую краску, которая не была бы использована раньше?
Гиппократ. Я думаю, что они обогащают человечество открытиями.
Сократ. Но в чем, по твоему мнению, состоит различие между ними?
Гиппократ. Я думаю, что мореплавателя можно назвать открывателем, а живописца — изобретателем. Мореплаватель открывает остров, который существовал раньше, только он был неизвестен, в то время как живописец изобретает новую краску, которая до этого вообще не существовала.
Сократ. Никто не смог бы ответить на этот вопрос лучше. Но, скажи мне, математик, ищущий новую истину, открывает ее или изобретает? Открыватель ли он, как мореплаватель, или изобретатель, как живописец?
Гиппократ. Я не могу ответить на этот вопрос, так как у меня еще нет никакого собственного опыта. Но Театет рассказывал мне о их совместных исследованиях с Теодором, и поэтому я думаю, что математика скорее нужно считать открывателем, хотя он имеет сходство и с изобретателем.
Сократ. Хорошо сказано. Мне кажется, что математик в равной мере открыватель и изобретатель. Но почему ты ответил так быстро? Ты хотел сказать, что математик в известном смысле является также и изобретателем?
Гиппократ. Математик сам создает понятия, которые он изучает. При этом, когда математик создает новое понятие, он поступает так же, как изобретатель. Когда же он изучает понятие, введенное им самим или кем-либо другим, или формулирует теорему — на языке математики — и доказывает ее, то он поступает как открыватель. После всего, что мне рассказал Театет, «открытие» теорем в работе математиков играет, по-видимому, большую роль, чем «изобретение» понятий, так как самые простейшие понятия, например понятия числа и делимости, приводят к столь многим и глубоким проблемам, что математики до сих пор смогли решить лишь небольшую их часть.
Сократ. Очевидно, дорогой Гиппократ, твой друг Театет уже многое изучил и, как я вижу, успешно. Мне кажется, что математик больше похож на открывателя. Он — смелый мореплаватель, плавающий по неизвестному морю и исследующий его побережья, острова и водовороты. Я хотел бы только добавить, что математик в некотором роде также изобретатель, в особенности когда он вводит новые понятия. Ведь каждый открыватель должен быть в какой-то мере изобретателем. Например, если мореплаватель хочет достичь мест, до него никем не достигнутых, он должен построить корабль, который был бы лучше других кораблей. Новые понятия, введенные математиками, подобны новым кораблям, которые поддерживают исследователя в великом море мыслей. Прежде всего математик является открывателем; изобретателем он является лишь постольку, поскольку им должен быть открыватель.
Гиппократ. Дорогой мой Сократ, я уверен, что в Афинах и, вероятно, даже во всей Элладе нет человека, который так же, как ты, владел бы искусством вести беседу. Каждый раз, когда ты обсуждаешь мои слова, ты говоришь то, о чем я, возможно, подозреваю, но не могу выразить с такой ясностью/Из твоего заключения следует, что главная цель математика — исследование секретов и загадок в море человеческого мышления. Они существуют независимо от личности математика, но не от человечества в целом. Математик может вводить по своему усмотрению новые понятия в качестве рабочего инструмента. Однако он не совсем свободен в этом, потому что новые понятия должны быть полезны для его работы. Мореплаватель тоже может построить любой корабль по своему усмотрению, но мы бы сочли его сумасшедшим, если бы он построил корабль так, что тот развалился на куски при первом же шторме. Теперь, я думаю, все ясно.
Сократ. Если ты все так ясно представляешь, попробуй снова ответить на вопрос, что же изучает математика.
Гиппократ. Попытаюсь, но, разумеется, это снова будет неполный ответ, ведь я все еще понимаю лишь часть истины.
Сократ. Тогда смело вперед, подобно отважному мореплавателю!
Гиппократ. Теперь я вижу: раньше мы ошибочно утверждали, что математика занимается вещами, которых в действительности нет. Эти вещи существуют, но не так, как существует камень или дерево. Мы их не можем увидеть, коснуться, мы можем только охватить их своими мыслями. Есть другой мир — мир математики, отличный от обычного мира, в котором мы живем. А математик — отважный мореплаватель, не отступающий перед трудностями, опасностями и риском, подстерегающими его.
Сократ. Друг мой, твоя юношеская энергия почти сбивает меня с ног, но боюсь, что в пылу энтузиазма ты не замечаешь некоторых вопросов.
Гиппократ. Каких вопросов? Ты пожертвовал мне так много времени, но, прошу тебя, не оставляй меня на полпути и скажи, что я позабыл.