Динамика звёздных систем — страница 1 из 7




Библиотека

«Математическое просвещение» Выпуск 12

В. Г. Сурдин Динамика ЗВЁЗДНЫХ СИСТЕМ

Издательство Московского центра

НЕПРЕРЫВНОГО МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ

Москва • 2001

УДК 524 С90

ББК 22.67


Аннотация

Великие астрономические открытия Николая Коперника, Тихо Браге, Иоганна Кеплера, Галилео Галилея положили начало новой научной эре, стимулируя развитие точных наук. Астрономии выпала большая честь заложить основания естествознания: в частности, создание модели планетной системы привело к появлению математического анализа.

Из этой брошюры читатель узнает о многих фантастических достижениях астрономии, сделанных в последние десятилетия.

Текст брошюры представляет собой дополненную автором обработку записи лекции, прочитанной им для школьников 9-11 классов 11 ноября 2000 года на Малом мехмате МГУ.

Брошюра рассчитана на широкий круг читателей: школьников старших классов, студентов младших курсов, учителей...

ISBN 5-900916-90-1

Сурдин Владимир Георгиевич.

Динамика звёздных систем.

(Серия: «Библиотека „Математическое просвещение"»).

М.: МЦНМО, 2001. — 32 с.: ил. + 1 вкл.

Главный редактор серии В. М. Тихомиров.

Заведующая редакцией В. Л. Браккер.

Редакторы А. А. Ермаченко, Е. Н. Осьмова.Техн. редактор М. Ю. Панов.

Лицензия ИД № 01335 от 24/Ш 2000 года. Подписано к печати 18/V 2001 года. Формат бумаги 60x88 Vie- Офсетная бумага № 1. Офсетная печать. Объём 2,00 печ. л. + + 1 вкл. (0,25 печ. л.). Уч.-изд. л. 2,09. Тираж 5000 экз. Заказ 5433.

Издательство Московского центра непрерывного математического образования. 121002, Москва, Г-2, Бол. Власьевский пер., 11. Тел. 241-05-00.

Отпечатано в Производственно-издательском комбинате ВИНИТИ. 140010, г. Люберцы Московской обл., Октябрьский пр-т, 403. Тел. 554-21-86.




Введение



Практически всё, что мы видим вокруг себя в космосе — это звёзды, более или менее похожие на наше Солнце. Разумеется, нам известно вещество и вне звёзд: это планеты и их спутники, кометы и астероиды, межзвёздные газ и пыль. Но всё это незначительный «довесок» в сравнении с гигантскими звёздами, объединенными в системы — двойные и кратные, в звёздные скопления и галактики. Кроме этого, есть свидетельства, что во Вселенной много небарионного вещества, состоящего не из привычных нам частиц — протонов и нейтронов (главных представителей группы барионов), а из частиц совсем другой, пока неясной природы, единственное взаимодействие которых с обычным веществом происходит через силу гравитации. Но, даже если это необычное вещество существует, понять его свойства удастся, лишь изучая поведение нормального вещества, т. е. звёзд — главного наблюдаемого персонажа Вселенной.

Итак, современная астрономическая Вселенная состоит из звёзд. Но так было не всегда: более 10 млрд, лет назад, когда от начала расширения Вселенной прошло не более 300 тыс. лет, наш мир был заполнен очень горячим и однородным веществом и излучением, причём по плотности своей массы излучение превосходило вещество. Когда возраст Вселенной превысил 300 тыс. лет и наполняющая её материя остыла примерно до 4 000° К, плотность массы излучения стала ниже, чем вещества, и с тех пор это различие между веществом и излучением только нарастало; сегодня мы живём во Вселенной, где доминирует вещество. Но ещё многие сотни миллионов лет после того, как вещество стало основным компонентом Вселенной, оно оставалось практически однородным, как воздух, заполняющий наши комнаты: его плотность везде одинакова; его лишь слабо возмущают звуковые волны, бегущие в разных направлениях.

До сих пор астрономы не знают точно, как произошло деление почти однородного вещества Вселенной на звёзды, но каким-то образом это случилось: когда возраст Вселенной ещё не достиг 1 млрд, лет, почти всё её барионное вещество оказалось разбито на плотные газовые шары с характерной массой порядка Ю30 кг, объединённые в галактики с массами порядка 10й кг. Принципиальных трудностей в понимании этого процесса нет. Распространение звуковых волн в космическом веществе, как и в комнатном воздухе, создаёт перепады плотности. В обычной звуковой волне «комнатного размера» сила упругости газа гораздо выше силы гравитационного взаимодействия его частиц друг с другом, поэтому гравитация не мешает циклическому колебанию звуковых волн в комнате. Но в больших, космических масштабах действие гравитации может изменить эту картину: если в

некоторых областях повышенной плотности газа его давление не способно противостоять его же собственной силе притяжения, то такие уплотнения, случайно возникнув, уже не расширяются, а продолжают сжиматься. Этот процесс называют «гравитационной неустойчивостью» [1—3]. По-видимому, именно он породил звёзды и звёздные системы, власть в которых окончательно захватила гравитация.


Закон гравитации Ньютона


Великие теоремы притяжения

Итак, в мире звёзд царствует гравитация. Остальные три физических взаимодействия — электромагнитное, слабое и сильное ядерные — практически никакой роли в движении звёзд и в эволюции звёздных систем не играют. Сила гравитации описывается чрезвычайно простым, особенно с точки зрения искушённых в математике школьников, законом. Исаак Ньютон опубликовал его в 1687 году в своей замечательной книге «Начала натуральной философии». Этот закон описывает взаимодействие двух материальных точек, т. е. таких тел, размер которых мал по сравнению с разделяющим их расстоянием. Но он применим к любым телам, поскольку каждое из них можно представить в виде совокупности материальных точек. Закон Ньютона гласит, что две материальные точки, обладающие массами М, и М2, притягиваются друг к другу с одинаковой силой, равной произведению их масс, делённому на квадрат расстояния между ними и, разумеется, умноженному на некоторую константу (обычно в курсах физики её обозначают буквой G, от лат. gravitas — тяжесть), значение которой зависит от единиц измерения массы, силы и расстояния:

В системе СИ ([М] = кг, [R] = м, [F] = Н) значение

но астрономы (и физики-теоретики, когда они работают в этой области) пользуются более удобными для проведения вычислений системами единиц, в которых многие константы, в том числе и G, можно полагать равными единице и забывать про них.

Обратите внимание, как коротка запись числа G — всего четыре значащих цифры; другие физические константы содержат по 8—10, а порой и 12 цифр. Почему же именно значение G измерено с такой низкой точностью? А потому, что гравитация — слабая сила, менее других проявляющая себя в лабораторных экспериментах. Очень трудно

определить притяжение двух тел с аккуратно измеренной массой. Если два большущих слона (М1 = М2 = 4 т) стоят в лаборатории, тесно прижавшись друг к другу (R= 1 м), то их взаимное гравитационное притяжение составляет всего около 0,1 г. А вот если бы один слон состоял только из протонов, а другой — только из электронов, то они притягивались бы с силой порядка 1030 т! К счастью, все слоны, планеты и звёзды состоят практически из равного количества протонов и электронов, электрическое взаимодействие которых уравновешивается. Зато гравитационное взаимодействие всех частиц — протонов, нейтронов и электронов — суммируется, поскольку в природе нет гравитационных зарядов разного знака. Поэтому крайне слабая сила всемирного тяготения, почти незаметная между лабораторными телами, является доминирующей для крупных космических тел.

Итак, взаимодействие материальных точек описывается очень простым законом. Для математика этого было бы достаточно, но физик и астроном сразу вспоминают, что реальные тела — это ведь не точки, а протяжённые объекты. Значит, производя расчёты, придётся иметь дело с суммированием или с интегрированием, т. е. с вычислением суммы всех сил, действующих на интересующий нас объект со стороны всех прочих объектов Вселенной. Это задача крайне сложная: представьте себе, что слон притягивает мышонка, и нам предстоит просуммировать все силы, действующие на мышонка со стороны каждой точки хобота, ушей, ног, хвоста и прочих органов слона — со стороны миллионов частей, каждую из которых можно уподобить материальной точке... Сегодня мы можем сказать: что в этом особенного? Мысленно разобьём слона на миллион частей и просуммируем силы от единицы до миллиона. Настольный компьютер сделает это за минуту, поскольку суммировать придётся простенькие члены. Но во времена Ньютона не было компьютеров, и любое суммирование или то, что мы теперь называем интегрированием по объёму, было чрезвычайно сложной операцией, ведь её приходилось выполнять пером на бумаге. И Ньютон не продвинулся бы далеко в исследовании Вселенной, если бы не две замечательные теоремы, которые ему удалось доказать.

I Теорема 1. Сферическое тело (тонкая сферическая оболочка) постоянной плотности притягивает любую точку, находящуюся вне его, так, как будто вся масса тела сосредоточена в его центре.

Эта изумительная теорема дала возможность небесным механикам — людям, которые занимаются расчётом движения планет и космических зондов, а также звёзд и галактик, — свести большинство задач о взаимодействии космических тел к задаче о притяжении двух точек. Дело в том, что почти все небесные тела, за редким исключением, можно уподобить последовательности вложенных друг в друга сфер, каждая из которых имеет постоянную плотность (которая обычно меняется лишь от центра к периферии). Например, у нашей Земли форма почти шарообразная, плотность растёт по направлению к центру, однако, разбив её на бесконечное количество сферических слоёв, вы убедитесь, что каждый из них притягивает внешнюю точку так, как будто вся масса сосредоточена в центре. Поэтому никакого суммирования или интегрирования не нужно.

Теорема 2. Если точку поместить внутри однородной сферы (причём в любом месте, а не только в центре), то она не ощутит притяжения сферы, поскольку силы, действующие на неё со стороны всех элементарных частей этой сферы, в точности уравновесятся.