онгфенгшании — от китайской Лонфеншани, а дальтении — от норвежского Дала и греческого корня «тения» (лента.) Чуарии представляли собой крупные (до полусантиметра в поперечнике) морщинистые шаровидные оболочки колониальных прокариот или эукариот. Лонгфенгшании напоминали округло-удлиненный листок на черенке. Ветвящиеся ленты дальтении дорастали до 6 см.
Самые необычные окаменелости того времени скрывались подо льдами Шпицбергена в породах возрастом 750 млн лет. Там обнаружены остатки весьма развитых зеленых водорослей. Вместе с ними встречаются меланокирилл и валькирии. Странный меланокирилл (греч. «черный господин») был похож на вазу высотой 2–3 мм, то есть был намного крупнее многих своих современников. Сидели в таких вазочках-раковинках древнейшие амебы. Несмотря на мелкие размеры, эти амебы были крупнейшими хищниками своего времени, а возможно, и первыми плотоядными животными вообще. Валькирии могут быть остатками более сложных многоклеточных. У миллиметровых (в длину) валькирий, похожих на червячков с отростками, различается шесть типов клеток. Валькириями эти существа были названы потому, что найдены они на Шпицбергене. Где-то около этого полярного архипелага скандинавские мифы помещали вальхаллу, куда небесные девы-валькирии (выбирающие убитых) уносили души храбрейших из павших воинов. Может быть, валькирии (ископаемые организмы, а не мифические девы) и были первыми существами, которые убирали поле «боя», то есть были разрушителями-падалеядами?
Из одновозрастных отложений Китая известны плоские кольчатые ленты длиной по 2–3 см. Некоторые из них имеют отверстие на одном из концов червеобразного тела или вытянутый хоботок. Они были описаны как предки настоящих кольчатых червей, но не исключена и водорослевая природа этих организмов. А вот кольчатая партия с Тиманского кряжа России, один конец которой заужен, а другой — уплощен, могла действительно быть очень простеньким червем.
В тот же промежуток времени началась поступательная эволюция эукариотного планктона (греч. «блуждающий») — населения водной толщи, которое в основном состояло из акритарх (греч. «неизвестного происхождения»). Точная принадлежность акритарх, как явствует из их названия, не ясна. Это микроскопические (меньше миллиметра в поперечнике) плотные органикостенные оболочки со всякими шипами, выростами и оторочками. При жизни форма акритарх приближалась к шару. Большинство из них, наверное, были вымершими одноклеточными водорослями, родственниками динофлагеллят (греч. «вертящие жгутиком»).
Природу акритарх помогли понять биомаркеры. Сначала выяснилось, что очень характерные биомаркеры остаются от динофлагеллят. Они обильны в мезозойских и кайнозойских породах (начиная с 248 млн лет) — в слоях с остатками этих водорослей. Хотя более древние динофлагелляты почти не известны, такие же биомаркеры широко распространены в верхнепротерозойских и нижнепалеозойских отложениях. Они встречаются там, где очень много акритарх. Более того, эти биомаркеры были извлечены прямо из акритарховых оболочек, что оказалось весьма непростой задачей. Ведь даже шарики в одну десятую часть миллиметра выглядят в мире акритарх гигантами, а толщина оболочки измеряется тысячными долями миллиметра.
Появились акритархи приблизительно 1,8 млрд лет назад, но стали распространены около 1,6 млрд лет назад. Первые из них напоминали очень мелкие простенькие гладкие шарики размером от 0,02 до 0,1 мм. Между 1,1 и 0,8 млрд лет назад наблюдалось их многообразие и обилие. Среди них завелись огромные (для этих организмов) формы — 0,2 мм и более в диаметре. Очень большие акритархи, скорее всего, были сидячими на дне организмами.
Снежный ком, вертящийся на боку
Избыток водорослевого планктона привел к печальным последствиям для донных бактериальных сообществ, в том числе строматолитовых. Бурное развитие водорослей в толще воды ухудшало освещенность морского дна. Зависимые от светового потока строматолиты не могли сдвинуться на мелководье, где планктон не так многочислен. Туда их не выпускали водорослевые луга. Водоросли, растущие гораздо быстрее микробных строматолитов, заняли их основные местообитания. Обилие донных бактериальных сообществ пошло на убыль.
Но водорослевый планктон не только застил свет строматолитам. Ранее уже говорилось об альбедо земной поверхности и его значении для климата. Даже «цветение» планктона повышает альбедо водной поверхности, поскольку облака небесные прямо связаны с облачками планктона. Планктонные водоросли накапливают особое соединение серы — диметилсульфид. Водорослям он необходим для поддержания давления внутри клетки. Это вещество выделяется наружу при их выедании. Формула его похожа на прическу с шестью косичками.
Как и положено косичкам, они так и напрашиваются, чтобы за них подергали или что-нибудь к ним прицепили. Так и происходит. При поступлении в атмосферу это ломкое соединение распадается и, растворяясь в воде, превращается в кислотные капли. Капли служат затравкой для сгущения водяного пара. А чем кучнее облачность, тем меньше тепла получает планета. Ведь облачный покров отражает тепло обратно. Причем продукты распада водорослевых соединений не только повышают яркость облаков, но и продлевают время их существования. И все это усиливает альбедо. А на холоде водоросли еще больше выделяют свое любимое вещество. Самое удивительное в этой заоблачной истории, что при пониженной температуре снаружи проще поддерживать давление внутри (клетки). Получается, что водоросли как бы устанавливают погоду по своему вкусу.
Из современных планктонных водорослей основными поставщиками серных соединений являются динофлагелляты, кокколитофориды и диатомовые (о них речь впереди). Они производят до 50 т серы ежегодно.
Общее падение температуры в позднем протерозое было вызвано не только уплотнением облачного покрова. Начавшийся рост ледников все больше обнажал сушу для выветривания. Среди выносимых с суши элементов были соединения железа, фосфора и других важных для водорослей веществ. Возрастала продуктивность водорослевого планктона. Соединения фосфора высвобождались из органических веществ прямо в верхних слоях океана. Они использовались новыми поколениями планктона. Повысились темпы захоронения органического вещества. Поскольку на его изготовление требуется углекислый газ, происходило общее ослабление «парникового эффекта». (Для последнего, четвертичного ледникового периода отмечается прямая связь высокой продуктивности планктонных водорослей с низким содержанием в атмосфере углекислого газа.) Холодало. Разлагавшие органику сероводородобразующие бактерии перестали поспевать за поступлениями органического вещества. Распад цепи из производителей, потребителей и разрушителей привел к выбросу кислорода. Уровень его содержания в атмосфере подскочил до 10–15 %, считая от нынешнего.
Так планктонные шарики основательно вмешались в климатические дела земного шара. В конце протерозоя (750–550 млн лет назад) его бросало из жара в холод с преобладанием последнего. Особенно обширное оледенение пришлось на начало вендского периода, которым заканчивался протерозой.
В 1982 году мне удалось посетить родину вендов — Подолию, что на Украине. Случилось так, что американский физик Джозеф Киршвинк, который разгадал выкрутасы пчелиных плясок, раскопал остатки древнейших магниточувствительных бактерий и нашел кусочки магнетита в мозге голубей, китов и человека, решил узнать, где в вендском периоде (605–550 млн лет назад) находилась Балтия.
Сейчас такого материка нет. Он превратился в восточную часть Европы. У каждого континента, как и у любого человека, есть своя судьба. Он нарождается, растет, постоянно двигается и сталкивается с другими.
Примером служит судьба немецкого метеоролога Альфреда Вегенера. В 20-е годы XX века он окончательно выбил почву из-под ног обывателей, сказав, что материки движутся (мобильны). Всякая гипотеза переживает два периода, прежде чем занять подобающее ей место в арсенале науки (или на пыльных книжных полках в забытом библиотечном подвале). Сначала она и ее создатель (при жизни) считаются сумасшедшими и недостойными даже критических упоминаний на страницах истинно научных произведений. Затем он (чаще посмертно) признается гениальным, а она привлекается для объяснения всего и вся. Нетрудно догадаться, что основная причина глубокой неприязни и почти сорокалетнего забвения гипотезы Вегенера крылась в посягательстве метеоролога на основы геологической науки.
В 1960-е годы ученые наконец-то смогли всерьез взяться за исследование океанического дна. Выяснилось, что Вегенер был прав и материки двигались и двигаются. До нас осознание сего факта почти подпольно добралось еще лет на десять позже. В конце 1970-х, когда весь мир перешел на мобилистские карты прошлого, будущие геологи рисовали Землю давних времен по канонам современной географии (фиксистские реконструкции). Лишь в выпускной год в курсе под стыдливым названием «История геологических наук» профессор Виктор Евгеньевич Хаин объяснял, чем же живет современная геология. Поэтому, исходя из постулата, что главное для студента — знать точку зрения преподавателя, был сделан вывод, что нужно быть «фиксистом», но с легкой примесью «мобилизма».
Итак, в чем суть мобилизма? Посередине океанов проходят огромные хребты, названные срединно-океаническими. Вдоль хребтов тянутся рифтовые долины («рифт, по-английски — «расщелина»). Изливающаяся по обе стороны расщелины лава застывает гигантскими полосами, самые древние из которых находятся от нее дальше всех.
Рифтовые долины являются теми линиями напряжения, по которым происходит сначала раскол, а потом и раздвиг плит, а с ними и материков. Расходясь, они сталкиваются с другими. Например, Азия состоит из нескольких ведущих (каждая) свой образ жизни плит: Индия до сих пор не успокоилась и упрямо движется в прочую Азию, от чего у той лезут вверх Гималаи. Если бы Христофор Колумб отплыл на поиски страны пряностей в наши дни, ему пришлось бы преодолеть на пять-десять метров больше, прежде чем его впередсмотрящий заметил бы острова Америки. Примерно на столько же увел