До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной — страница notes из 80

Примечания

1

Это слова моего давнего наставника, аспиранта на кафедре математики Колумбийского университета в 1970-е гг., Нила Беллинсона, великодушно тратившего свое время и уникальный талант на обучение математике молодого студента — меня, — которому нечего было предложить взамен, кроме сохранения страсти к учению. Мы тогда обсуждали работу о человеческой мотивации, которую я писал для курса психологии в Гарварде. Курс вел Дэвид Басс, работающий сейчас в Университете Техаса в Остине.

2

Шпенглер О. Закат Европы. — М.: Попурри, 2019.

3

Там же.

4

Otto Rank, Art and Artist: Creative Urge and Personality Development, trans. Charles Francis Atkinson (New York: Alfred A. Knopf, 1932), 39.

5

Сартр излагает эту точку зрения через размышления приговоренного к казни героя рассказа «Стена» Пабло Иббиеты. Jean-Paul Sartre, The Wall and Other Stories, trans. Lloyd Alexander (New York: New Directions Publishing, 1975), 12.

6

Джеймс У. Многообразие религиозного опыта. — М.: Наука, 1993. С. 114 [В русском переводе, выполненном для издания 1910 года, дословность этой цитаты нарушена «.и для нас уже отравлены все источники радости». Однако выражение Джеймса про «червя в сердцевине» стало важной цитатой в англоязычной культуре. Поэтому в основном тексте перевод дается по: Шермер М. Небеса на земле. — М.: Альпина нон-фикшн, 2019. — Прим. науч. ред.]

7

Ernest Becker, The Denial of Death (New York: Free Press, 1973), 31. Беккер считал, что доминирующее влияние на него оказал Отто Ранк.

8

Ральф Уолдо Эмерсон — американский поэт и мыслитель. — Прим. ред.

9

Ralph Waldo Emerson, The Conduct of Life (Boston and New York: Houghton Mifflin Company, 1922), прим. 38, 424.

10

Эдвард Уилсон прибегает к слову «consilience» (совпадение, стечение), чтобы описать свое представление о том, как разрозненные знания сливаются воедино и дают более глубокое понимание. E. O. Wilson, Consilience: The Unity of Knowledge (New York: Vintage Books, 1999).

11

В последующих главах я представлю данные, указывающие на повсеместное влияние зарождающегося у человечества осознания собственной смертности, но поскольку неоспоримых данных, позволяющих судить о настроениях древнего человека, у нас нет, то вывод этот принимается не всеми. Изложение альтернативной точки зрения, согласно которой страх смерти — современный недуг, см., к примеру: Philippe Aries, The Hour of Our Death, trans. Helen Weaver (New York: Alfred A. Knopf, 1981). Точка зрения Беккера, построенная на озарениях Отто Ранка, состоит в том, что наш биологический вид насквозь пропитан страхом смерти.

12

Набоков В. Память, говори. — СПб.: Симпозиум, 1999.

13

Robert Nozick, "Philosophy and the Meaning of Life," in Life, Death, and Meaning: Key Philosophical Readings on the Big Questions, ed. David Benatar (Lanham, MD: The Rowman & Littlefield Publishing Group, 2010), 73–74.

14

Emily Dickinson, The Poems of Emily Dickinson, reading ed., ed. R. W. Franklin (Cambrige, MA: The Belknap Press of Harvard University Press, 1999), 307.

15

Henry David Thoreau, The Journal, 1837–1861 (New York: New York Review Books Classic, 2009), 563.

16

Franz Kafka, The Blue Octavo Notebooks, trans. Ernst Kaiser and Eithne Wilkens, ed. Max Brod (Cambridge, MA: Exact Change, 1991), 91.

17

Передача по Третьей программе Би-би-си, вышедшая в эфир 28 января 1948 г. в 21:45, представляла собой запись дискуссии, состоявшейся в предыдущем году. https://genome.ch.bbc.co.uk/35b8e9bdcf60458c976b882d80d9937f

18

Рассел Б. Внесла ли религия полезный вклад в цивилизацию? // Рассел Б. Почему я не христианин. М., 1987. С 120.

19

Разумеется, это очень упрощенное описание паровой машины, построенной на основе так называемого цикла Карно, содержащего четыре этапа: (1) пар в емкости поглощает тепло от источника (описываемого обычно как тепловой резервуар) и толкает поршень, производя работу при постоянной температуре; (2) емкость отключается от источника тепла, и пар продолжает толкать поршень, производя теперь работу с одновременным падением температуры пара (но его энтропия при этом постоянна, ведь теплопередачи нет); (3) затем емкость подключается ко второму тепловому резервуару, температура которого ниже, чем температура первого, и при этой более низкой постоянной температуре производится работа по возвращению поршня в первоначальную позицию, в процессе излишнее тепло сбрасывается; (4) наконец, емкость отсоединяется от холодного резервуара, над поршнем продолжает выполняться работа; поршень возвращается в первоначальное положение, а температура пара при этом вновь поднимается до первоначального уровня. После этого цикл начинается с начала. В реальной паровой машине — в отличие от теоретической, которую мы анализируем математически, — эти этапы (или сравнимые с ними) реализуются разными способами, диктуемыми инженерными и практическими соображениями.

20

Карно С. Размышления о движущей силе огня и о машинах, способных развивать эту силу. — М.: Государственное издательство, 1923.

21

Представление бейсбольного мяча в виде единичной массивной частицы без внутренней структуры — грубая аппроксимация этого самого мяча. Однако применение Ньютоновых законов к этой приближенной модели мяча дает точное классическое движение центра масс мяча. Для движения центра масс третий закон Ньютона гарантирует, что все внутренние силы уравновешивают друг друга, поэтому движение центра масс зависит исключительно от приложенных к мячу внешних сил.

22

В исследовании под заголовком «Как часто чихают и сморкаются нормальные люди?» (B. Hansen, N. Mygind, "How often do normal persons sneeze and blow the nose?" Rhinology 40, no. 1 [Mar. 2002]: 10–12) утверждается, что в среднем люди чихают примерно раз в сутки. Поскольку людей на Земле около 7 млрд, это дает нам 7 млрд чиханий в сутки на весь мир. В сутках 86 400 секунд, поэтому получаем около 80 000 чиханий в секунду в мире.

23

Данное мной описание годится для краткого обзора, но существуют экзотические физические системы, в которых для того, чтобы разрешить обратную последовательность событий, мы должны подвергнуть систему еще двум манипуляциям, помимо обращения времени: мы должны также заменить все заряды частиц на обратные (так называемое зарядовое сопряжение) и заменить роли лево- и правосторонности (так называемая замена четности). Законы физики, как мы их сегодня понимаем, неизменно уважают совокупную замену всех трех этих знаков, о чем свидетельствует утверждение, известное как CPT-теорема (где C означает charge conjugation, то есть зарядовое сопряжение, P — parity reversal, то есть смену четности, а T — time reversal, то есть обращение времени).

24

Для двух решек расчет выглядит так: (100 х 99)/2 = 4950; для трех так: (100 х 99 х 98)/3! = 161 700; для четырех: (100 х 99 х 98 х 97)/4! = 3 921 225; для пяти: (100 х 99 х 98 х 97 х 96)/5! = 75 287 520; для 50 решек расчет таков: (100!/(50!)2) = 100 891 344 545 564 193 334 812 497 256.

25

Точнее, энтропия есть логарифм числа членов в заданной группе. Эта важная математическая особенность гарантирует, что энтропия обладает разумными физическими свойствами (к примеру, когда две системы объединяют, их энтропии складываются), но при рассмотрении качественных свойств ее вполне можно проигнорировать. В главе 10 мы будем неявно пользоваться более точным определением, но пока хватит и этого.

26

В этом примере мы для простоты будем рассматривать только пар — молекулы H2O, плавающие в вашей ванной комнате. Мы не будем обращать внимание на воздух и другие вещества, которые там тоже присутствуют. Мы проигнорируем также внутреннее строение молекул воды и будем рассматривать их как бесструктурные точечные частицы. Когда речь пойдет о температуре пара, помните, что жидкая вода превращается в пар при 100 °C, но, если пар уже образован, его температуру можно поднять и выше этого значения.

27

Физически температура пропорциональна средней кинетической энергии частиц, поэтому математически она вычисляется путем усреднения квадрата скорости каждой частицы. Для наших целей достаточно рассматривать температуру в терминах средней скорости — средней по величине.

28

Точнее, первое начало термодинамики представляет собой вариант закона сохранения энергии, который (1) признает теплоту как форму энергии и (2) учитывает работу, произведенную системой или над системой. Таким образом, сохранение энергии означает, что изменение внутренней энергии системы возникает из-за разницы между полным количеством теплоты, которую она получает, и полной работой, которую производит. Особенно хорошо информированный читатель, возможно, отметит, что когда мы рассматриваем энергию и ее сохранение в глобальном масштабе — по всей Вселенной, — то появляются тонкости. Нам нет нужды их разбирать, поэтому мы вполне можем просто принять утверждение о том, что энергия сохраняется.

29

Примерно так же, как в примере с паром в вашей ванной, где я оставил без внимания молекулы воздуха, для простоты я не буду явно рассматривать столкновения между горячими молекулами, вылетевшими из пекущегося хлеба, и более холодными молекулами воздуха, летающими по вашей кухне и по всему дому. Такие столкновения должны в среднем увеличивать скорость молекул воздуха и уменьшать скорость тех, что вылетели из хлеба, приводя в конечном итоге оба типа молекул к одинаковой температуре. Понижение температуры молекул хлеба должно снижать их энтропию, но повышение температуры молекул воздуха более чем компенсирует повышение энтропии, так что суммарная энтропия обеих групп на самом деле повысится. В упрощенном варианте, который я описал, можно считать среднюю скорость молекул, высвобожденных хлебом, постоянной в процессе их распространения; тогда их температура будет оставаться постоянной, так что повышение их энтропии будет происходить вследствие того, что они заполняют больший объем.

30

Для подкованного в математике читателя скажу, что в основе данного обсуждения (так же как и в большинстве изложений статистической механики в учебниках и исследовательской литературе) лежит ключевое формальное предположение. Для любого заданного макросостояния существуют сопоставимые микросостояния, которые будут развиваться в направлении более низкоэнтропийных конфигураций. К примеру, рассмотрим обращение во времени любого развития событий, результатом которого стало заданное микросостояние, берущее начало в более ранней низкоэнтропийной конфигурации. Такое «перевернутое во времени» микросостояние должно развиваться по направлению к более низкой энтропии. В общем случае мы классифицируем такие микросостояния как «редкие» или «специализированные». Математически такая классификация требует определения меры на пространстве конфигураций. В знакомых ситуациях использование равномерной меры на таком пространстве действительно делает начальные условия со снижением энтропии «редкими» — то есть с малой мерой. Однако, если мера выбрана так, чтобы достигать пиковых значений в окрестностях таких начальных конфигураций со снижением энтропии, они по построению не будут редкими. Насколько нам известно, выбор меры производится эмпирически; для систем того рода, что мы встречаем в повседневной жизни, равномерная мера выдает предсказания, которые хорошо согласуются с наблюдениями; то же можно сказать о введенной нами мере. Но важно отметить, что выбор меры оправдывается экспериментом и наблюдением. Когда мы рассматриваем экзотические ситуации (такие как ранняя Вселенная), для которых у нас нет данных, позволяющих выбрать конкретную меру, приходится признать, что интуиция о «редких» или «оригинальных» состояниях не имеет такой же эмпирической базы.

31

Есть несколько важных моментов, которые мы в этом абзаце обошли молчанием и которые меняют смысл понятия «максимальная энтропия», когда речь идет о Вселенной. Во-первых, в этой главе мы не принимаем во внимание роль гравитации. В Главе 3 мы это сделаем. И, как мы увидим, гравитация оказывает глубокое влияние на природу высокоэнтропийных конфигураций частиц. Мало того, хотя мы не будем на этом сосредоточиваться, в заданном конечном объеме пространства конфигурацией с максимальной энтропией является черная дыра — объект, сильно зависящий от гравитации, — которая полностью заполняет пространственный объем (подробности можно посмотреть, к примеру, в моей книге «Ткань космоса», в главах 6 и 16). Во-вторых, если мы рассмотрим сколь угодно большие — даже бесконечно большие — области пространства, то конфигурациями с наибольшей энтропией для заданного количества вещества и энергии будут те, в которых составляющие их частицы (вещество и/или излучение) равномерно распределены по все возрастающему объему. В самом деле черные дыры, как мы узнаем в главе 10, в конечном итоге испаряются (посредством процесса, открытого Стивеном Хокингом), порождая все более высокоэнтропийные конфигурации, в которых частицы распределены все более равномерно. В-третьих, для целей данного раздела единственный нужный нам факт состоит в том, что энтропия, присутствующая в настоящий момент в любом заданном объеме пространства, имеет немаксимальное значение. Если бы этот объем содержал, скажем, комнату, в которой вы в настоящее время находитесь, — энтропия увеличилась бы, если бы все частицы, из которых состоите вы, ваша мебель и все остальные материальные структуры комнаты, коллапсировали в маленькую черную дыру, которая затем испарилась бы, испуская частицы, распространяющиеся по все большему объему пространства. Так что само существование интересных материальных структур — звезд, планет, жизни и т. п. — подразумевает, что энтропия сейчас ниже, чем она потенциально могла бы быть. И именно такие особые, сравнительно низкоэнтропийные конфигурации требуют объяснения. В следующей главе мы попробуем объяснить их возникновение.

32

Для особенно кропотливого читателя стоит, пожалуй, оговорить еще одну дополнительную деталь. Когда пар выталкивает поршень, он тратит на это часть той энергии, которую получил из топлива, но при этом пар не передает поршню никакой энтропии (предполагается, что поршень имеет ту же температуру, что и пар). В конце концов, находится ли поршень здесь или, будучи вытолкнутым, он находится на небольшом расстоянии отсюда, никак не сказывается на внутреннем порядке или беспорядке в нем; энтропия поршня не меняется. Поскольку поршню энтропия не передается, она полностью остается в паре. Это означает, что, когда поршень, готовясь к следующему толчку, возвращается в первоначальное положение, пар должен каким-то образом избавиться от избытка энтропии, который в нем накопился. Это достигается, как подчеркивается в этой главе, тем, что паровая машина сбрасывает тепло в окружающую среду.

33

Рассел Б. Поклонение свободного человека // Рассел Б. Почему я не христианин. М., 1987. С. 16.

34

Georges Lemaître, "Recontres avec Einstein", Revue desQuestions scientifiques 129 (1958): 129-32. [Репринт: RQS, 183 (2012): 541-5. Английский перевод: http://inters.org/lemaitre-einsten. Хотя эту фразу часто приводят в кавычках как дословную цитату Эйнштейна, в действительности она является меметизированным пересказом фрагмента воспоминаний Леметра о встречах с Эйнштейном. В исходной публикации это изложено так: "Après quelques remarques techniques favorables, il conclut en disant que du point de vue physique cela lui paraissait tout à fait abominable." — «После нескольких благосклонных технических замечаний он в заключение сказал, что с физической точки зрения это кажется ему совершенно отвратительным». Также вряд ли можно считать корректным выражение «отмахнулся» (в оригинале у Б. Грина "dismissed him out of hand"). Разговор с Эйнштейном начался на прогулке по парку в ходе Сольвеевского конгресса (1927) и был достаточно обстоятельным, чтобы пригласить Леметра продолжить его в такси. — Прим. науч. ред.] В полной истории обращения Эйнштейна к идее расширяющейся Вселенной участвовали два фактора. Во-первых, Артур Эддингтон показал математически, что более раннее предположение Эйнштейна о статичной Вселенной сталкивается с технической проблемой: решение неустойчиво, а именно — если пространство слегка подтолкнуть к расширению, то расширение пространства продолжится, а если слегка же подтолкнуть к сжатию, то пространство будет сжиматься и дальше. Во-вторых, из наблюдательных данных, как уже говорилось в этой главе, становилось все яснее, что пространство не статично. Сочетание того и другого убедило Эйнштейна отказаться от представления о статичной Вселенной (хотя некоторые утверждают, что именно теоретические соображения могли оказать на него наиболее серьезное влияние). Подробности этой истории можно найти в статье: Harry Nussbaumer, "Einstein's conversion from his static to an expanding universe", European Physics Journal — History 39 (2014): 37–62.

35

Alan H. Guth, "Inflationary universe: A possible solution to the horizon and flatness problems", Physical ReviewD 23 (1981): 347. Формальный физический термин для обозначения «космического топлива» — скалярное поле. В отличие от более привычных электрического и магнитного полей, которые дают вектор в каждой точке пространства (величину и направление электрического или магнитного поля в этой точке), скалярное поле дает в каждой точке пространства лишь одно число (либо числа, из которых можно определить энергию поля и давление).

36

Обратите внимание: в статье Гута, как и во многих последующих работах, подчеркивается роль инфляции в разрешении целого ряда космологических вопросов, прежде ставивших исследователей в тупик, — проблемы монополя, проблемы горизонта и, самое заметное, проблемы кривизны пространства. Доступный и полезный разбор этих вопросов см. в: Alan Guth, The Inflationary Universe (New York: Basic Books, 1998). Мне, вслед за Гутом, нравится объяснять инфляцию, поднимая более интуитивно понятный вопрос об определении внешнего толчка, давшего начало пространственному расширению Большого взрыва. [На русском языке вопрос весьма доходчиво изложен в книге Виленкин А. Мир многих миров. М.: CORPUS, Астрель, 2010. — Прим. науч. ред.]

37

Остывание, о котором идет речь, происходит после завершения инфляционного взрыва, когда Вселенная уже вошла в фазу менее стремительного, но все еще значительного пространственного расширения. Для простоты я обошел вниманием кое-какие промежуточные этапы развертывания космоса. Ранняя Вселенная остывала потому, что значительная часть содержавшейся в ней энергии несла в себе электромагнитные волны, а эти волны с расширением пространства растягиваются. Удлинение электромагнитных волн — так называемое красное смещение — уменьшает их энергию и снижает их общую температуру. Заметьте, однако, что, несмотря на понижение температуры, общая энтропия возрастает из-за увеличения объема пространства.

38

Существует также не самая популярная точка зрения, которая объясняет туманность изначальным квантовым ограничением на точность измерений, а не фундаментальной размытостью реальности. В этом подходе — его обычно называют «бомовской механикой» в честь физика Дэвида Бома, но иногда говорят и о «теории де Бройля — Бома», включая авторство нобелевского лауреата Луи де Бройля, — частицы сохраняют резкие и тонные траектории. Эти траектории отличаются от тех, что предсказывает классическая физика (на частицы во время движения действует дополнительная квантовая сила), но, воспользовавшись приведенным в главе сравнением, скажем, что эти траектории можно проводить острым пером. Неопределенность и размытость, упоминаемые в более традиционной формулировке квантовой механики, проявляются как статистическая неопределенность начального состояния любой заданной частицы. Разница между двумя этими подходами, хотя и существенная в плане картины реальности, которую рисует каждая из теорий, практически никак не влияет на квантовые предсказания.

39

Инфляционная космология — это совокупность теорий (в отличие от конкретной теории), основанных на предположении о том, что на раннем этапе развития Вселенная прошла короткий период стремительного ускоренного расширения. Конкретный механизм возникновения этой фазы и конкретные детали ее развития варьируют от одной математической формулировки к другой. Простейшие варианты плохо уживаются со все более точными наблюдательными данными, поэтому фокус сместился к несколько более сложным версиям инфляционной теории. Критики утверждают, что эти самые более сложные версии менее убедительны, и, более того, демонстрируют, что инфляционная парадигма слишком гибкая и полностью опровергнуть ее невозможно никакими данными. Сторонники утверждают, что мы здесь являемся свидетелями нормального научного процесса: мы непрерывно совершенствуем свои теории, приводя их в соответствие с наиболее точной информацией, извлекаемой из наблюдательных измерений и математических соображений. Говоря в более общем плане и на более формальном языке, утверждение, широко принимаемое космологами, состоит в том, что Вселенная пережила некую фазу, на протяжении которой размер сопутствующего горизонта уменьшился. Менее ясно, верно ли эта фаза описывается инфляционной космологией, в которой динамика обусловлена равномерно распределенной энергией скалярного поля, пронизывающей пространство (см. примечание 3 к этой главе), как я описал, или эта фаза, возможно, вызвана другим механизмом (среди множества предложенных физиками теорий можно назвать такие, как отскакивающая космология, инфляция браны, сталкивающиеся миры — браны, теории с переменной скоростью света и т. п.). В главе 10 мы коротко обсудим возможность отскакивающей космологии в варианте Пола Стейнхардта, Нила Турока и их коллег, в которой Вселенная проходит многочисленные циклы космологической эволюции.

40

Для особенно усердного читателя позвольте пояснить важный момент, затуманивающий рассказ. Если все, что вам известно о данной физической системе, — это то, что она обладает не максимальной доступной энтропией, то второе начало термодинамики позволяет вам сделать не один, а целых два вывода: во-первых, наиболее вероятным результатом эволюции системы по направлению в будущее станет увеличение ее энтропии, а во-вторых, наиболее вероятным результатом эволюции системы по направлению в прошлое будет также увеличение ее энтропии. Таково неотъемлемое свойство симметричных относительно хода времени законов — уравнений, которые совершенно одинаково работают при развитии сегодняшней ситуации как вперед, так и назад. Проблема в том, что высокоэнтропийное прошлое, к которому приводят такие соображения, несовместимо с низкоэнтропийным прошлым, о котором свидетельствуют память и записи. (Мы помним, что частично растаявшие кубики льда раньше были менее растаявшими, то есть обладали меньшей энтропией, а не более растаявшими и, соответственно, более высокоэнтропийными.)

Что еще важнее, высокоэнтропийное прошлое подорвало бы нашу уверенность не в чем-нибудь, а в самих законах физики, потому что такое прошлое не включало бы в себя эксперименты и наблюдения, которые поддерживают эти самые законы. Чтобы избежать потери уверенности в наших представлениях, мы должны принудительно ввести низкоэнтропийное прошлое. Как правило, мы делаем это путем введения нового предположения, предложенного философом Дэвидом Альбертом и известного как гипотеза прошлого. Гипотеза эта гласит, что энтропия зафиксирована на низком уровне вблизи Большого взрыва и с тех пор в среднем стабильно возрастает. Именно такой подход мы неявно использовали в этой главе. В главе 10 мы явным образом проанализируем маловероятную, но представимую возможность рождения низкоэнтропийного состояния из предыдущей высокоэнтропийной конфигурации. Вводную информацию и подробности см. в главе 7 книги «Ткань космоса» [Грин Б. Ткань космоса. Пространство, время и текстура реальности. — М.: Либроком, 2015. — Прим. ред.].

Математические описания энтропии позволяют сформулировать вопрос точно: в пределах произвольной области существует гораздо больше вариантов, в которых величина поля различается (выше здесь, ниже там, еще ниже вон там и так далее), чем тех, в которых она однородна (имеет одно и то же значение во всех точках); следовательно, требуемые условия обладают низкой энтропией. Однако здесь существует не проговариваемое вслух формальное положение, которое важно озвучить. Для простоты я воспользуюсь классическим языком, но все соображения здесь напрямую переводятся на язык квантовой физики. В микромире ни одна конфигурация частиц или полей фундаментально не выделена из всех прочих, поэтому в общем случае мы считаем их все равновероятными. Но это предположение опирается на то, что философы называют принципом безразличия. Выделяя при отсутствии априорных оснований одну микроскопическую конфигурацию относительно другой, мы присваиваем им равные вероятности реализации. Когда же мы сдвигаем фокус внимания на макромир, то вероятность одного макросостояния относительно другого определяется отношением числа микросостояний, реализующих каждое из них. Если одно из макросостояний обеспечивается вдвое большим числом микросостояний, чем другое, то и вероятность возникновения первого макросостояния будет вдвое выше, чем второго.

41

Обратите внимание, однако, что фундаментально принцип безразличия должен иметь эмпирическое основание. В действительности повседневный опыт подтверждает разумность применения принципа безразличия, хотя и неявного, во многих областях. Возьмите хотя бы наш пример с бросанием монет. Считая, что каждое «микросостояние» монет (состояние, задаваемое полным перечислением состояний всех монет: 1-я монета лежит орлом, 2-я монета — решкой, 3-я — решкой и так далее) равновероятно любому из остальных, мы делаем вывод, что те «макроскопические» ситуации (состояния, описываемые только общим числом орлов и решек, но не положением отдельных монет), которые могут быть реализованы большим числом микросостояний, более вероятны. Когда мы бросаем монеты, это предположение эмпирически подтверждается редкостью тех исходов, которые могут быть реализованы лишь небольшим числом микросостояний (таких как все орлы, к примеру) и заурядностью тех, которые могут быть реализованы множеством микросостояний (таких как половина орлов и половина решек).

Это имеет отношение и к нашей космологической дискуссии: когда мы говорим, что однородный кусочек инфляционного поля «маловероятен», мы точно так же привлекаем к делу принцип безразличия. Мы неявно предполагаем, что каждая возможная микроскопическая конфигурация поля (точное значение поля в каждой точке) имеет точно такую же вероятность появления, как и любая другая, — так что опять же вероятность любой заданной макроскопической конфигурации пропорциональна числу микросостояний, которые ее реализуют. Однако, в отличие от случая с бросанием монет, у нас нет никаких эмпирических данных в пользу этого предположения. Тот факт, что оно кажется нам разумным, основан на нашем повседневном опыте взаимодействия с макромиром, где принцип безразличия подтверждается наблюдениями. Но для космологического развертывания нам доступен лишь один экспериментальный прогон. Бескомпромиссный эмпирический подход подсказывает, что какими бы особыми ни казались некоторые конфигурации с позиции принципа безразличия, но если они ведут к наблюдаемой нами Вселенной, то они выделены и как класс заслуживают называться не просто «вероятными», но «определенными» (в обычном условном смысле всех научных объяснений). Математически такой сдвиг в том, что мы называем вероятным и маловероятным, известен как изменение меры на пространстве конфигураций (см. глава 2, примечание 14). Начальная мера, присваивающая равные вероятности всем возможным конфигурациям, называется «плоской» мерой. Таким образом, наблюдения могут мотивировать нас на введение «неплоской» меры, которая выделяет некоторые классы конфигураций как более вероятные.

Физиков, как правило, такой подход не устраивает. Введение над пространством конфигураций меры, которая обеспечивала бы присвоение максимального веса тем конфигурациям, которые приводят к известному нам миру, представляется физикам «неестественным». Физики хотят найти фундаментальную, изначальную математическую структуру, из которой будет вытекать такая мера, вместо того чтобы самим эту меру задавать. Здесь важно понять, не слишком ли многого мы хотим и не получится ли так, что успех просто сдвинет вопрос на один шаг назад к неявным предположениям, лежащим в основе любого фундаментального подхода. И это не пустячные придирки. В последние тридцать лет значительная часть теоретической работы в области физики элементарных частиц была направлена на вопросы тонкой настройки в наших самых проработанных теориях (тонкая настройка поля Хиггса в Стандартной модели физики элементарных частиц; тонкая настройка вопросов горизонта и кривизны в стандартной космологии Большого взрыва). Разумеется, такие исследования привели к глубокому проникновению как в физику элементарных частиц, так и в космологию, но не может ли наступить момент, когда нам просто придется принять какие-то свойства мира как заданные, без всякого объяснения? Мне, как и огромному большинству моих коллег, нравится думать, что ответ должен быть отрицательным. Но нет никакой гарантии, что так и будет на самом деле.

42

Андрей Линде, при личном общении 15 июля 2019 г.

Сам Линде предпочитает подход, при котором инфляционная фаза была инициирована квантово-туннельным переходом из царства всех возможных геометрий и полей, в котором даже концепции времени и температуры, возможно, еще не имеют смысла. Разумно используя некоторые аспекты квантового аппарата, Линде предположил, что квантовое создание условий для инфляционного расширения было, вполне возможно, обычным распространенным процессом в ранней Вселенной, которая не страдала от квантового подавления.

43

Естественно считать, что чем мощнее телескоп (чем обширнее его тарелка, чем больше размер зеркала и так далее), тем более далекие объекты он будет в состоянии различить. Но существует предел. Если объект настолько далек, что никакой свет, излученный им с момента рождения, еще не успел дойти до нас, то, какое бы оборудование мы ни использовали, увидеть его мы не сможем. Мы говорим, что такие объекты лежат за нашим космологическим горизонтом; эта концепция будет играть особенно важную роль в нашем разговоре об отдаленном будущем в главах 9 и 10. В инфляционной космологии пространство расширяется так стремительно, что окружающие его области действительно выносятся за пределы нашего космологического горизонта.

44

На основании косвенных данных (движения звезд и галактик) сложился консенсус о том, что пространство насыщено частицами темной материи — частицами, которые являются источником гравитационной силы, но не поглощают и не излучают света. Однако, поскольку все поиски темной материи до сих пор ничего не дали, некоторые исследователи предложили свои альтернативы темной материи, в которых наблюдения объясняются при помощи различных модификаций закона тяготения. Из-за продолжающихся неудач многочисленных текущих экспериментов по непосредственному обнаружению частиц темной материи альтернативные теории привлекают к себе все большее внимание.

45

Направление потока теплоты, от более нагретых веществ или сред к менее нагретым, есть прямое следствие второго начала термодинамики. Когда горячий кофе остывает до комнатной температуры, передавая часть своей теплоты молекулам воздуха в комнате, воздух слегка нагревается и, соответственно, его энтропия увеличивается. Повышение энтропии воздуха превышает снижение энтропии в остывающем кофе, гарантируя тем самым, что суммарная энтропия системы увеличивается. Математически изменение энтропии системы задается изменением ее теплоты, деленным на ее температуру т где 8 обозначает энтропию, р обозначает теплоту, а Т обозначает температуру). Когда теплота перетекает от горячей системы к холодной, величина изменения теплоты для каждой системы одинакова, но, как показывает приведенное уравнение, снижение энтропии горячей системы окажется меньше, чем увеличение энтропии холодной (из-за множителя Т в знаменателе), так что в итоге мы получаем повышение суммарной энтропии.

46

Согласно закону сохранения энергии, когда молекулы движутся из центра наружу, их гравитационная потенциальная энергия возрастает, а кинетическая, соответственно, уменьшается.

47

Для читателей, склонных к математике и имеющих подготовку в области физики, скажу, что в этом можно разобраться при помощи упрощенного расчета с использованием классической статистической механики, в которой энтропия пропорциональна объему фазового пространства. Предположим, что сжимающееся газовое облако удовлетворяет условиям (знаменитой) теоремы вириала, которая соотносит среднюю кинетическую энергию частиц K с их средней потенциальной энергией U посредством формулы K = — U/2. Затем, поскольку гравитационная потенциальная энергия пропорциональна 1/R, где R— радиус облака, мы видим, что K пропорциональна также 1/R. Более того, поскольку кинетическая энергия пропорциональна квадрату скоростей частиц, выясняем, что средняя скорость частиц пропорциональна 1/R. Таким образом, объем фазового пространства, доступного частицам в облаке, пропорционален^ (* /vR) 'где первый множитель представляет пространственный объем, доступный этим частицам, а второй — доступный им объем импульсного пространства. Мы видим, что снижение пространственного объема доминирует над ростом объема импульсного пространства, что дает общее снижение энтропии по мере сжатия облака. Отметим также, что теорема вириала гарантирует, что по мере сжатия облака снижение потенциальной энергии превосходит рост кинетической (благодаря делителю 2 в формуле, связывающей K и U), так что снижается не только энтропия сжимающейся части облака, но и ее энергия. Высвобождающаяся энергия излучается в окружающую ядро оболочку, энергия которой растет, как и ее энтропия.

48

Письмо от Ф. Х. Ч. Крика Э. Шрёдингеру от 12 августа 1953 г.

49

J. D. Watson and F. H. C. Crick, "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid", Nature 171 (1953): 737-38. Центральная фигура в этом открытии — химик и кристаллограф Розалинда Франклин, сделанная ею «фотография 51» была передана без ее ведома Уотсону и Крику Уилкинсом. Именно эта фотография позволила Уотсону и Крику завершить модель ДНК в виде двойной спирали. Франклин умерла в 1958 г., за четыре года до присуждения Нобелевской премии за открытие структуры ДНК, — а посмертно Нобелевская премия не может быть присуждена. Будь Франклин жива на тот момент, неясно, как поступил бы Нобелевский комитет. См., к примеру: Brenda Maddox, Rosalind Franklin: The Dark Lady of DNA (New York: Harper Perennial, 2003).

50

Maurice Wilkins, The Third Man of the Double Helix (Oxford: Oxford University Press, 2003), 84.

51

Шредингер Э. Что такое жизнь? — М.: Атомиздат, 1972.

52

Time magazine, Vol. 41, Issue 14 (5 April 1943): 42.

53

Цит. по: Шредингер Э. Что такое жизнь? / Пер. А. А. Малиновского, Г. Г. Полошенко. — М.; Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. С. 11.

54

Там же.

55

K. G. Wilson, "Critical phenomena in 3.99 dimensions", Physica 73 (1974): 119. Полутехническое описание и ссылки можно посмотреть в нобелевской лекции Кена Уилсона: https://www.nobelprize.org

56

Представление о вложенных историях, иногда описываемых как «уровни понимания» или «уровни объяснения», предлагалось учеными широкого спектра научных дисциплин. Психологи говорят об объяснении поведения на биологическом уровне (с привлечением физико-химических причин), когнитивном (с привлечением высокоуровневых функций мозга) и культурном (с привлечением социальных влияний); некоторые когнитивисты (начиная с нейробиолога Дэвида Марра) организуют анализ систем обработки информации на вычислительном, алгоритмическом и физическом уровнях. Для многих иерархических схем, продвигаемых философами и физиками, характерна приверженность натурализму — термин, который часто используется, но который трудно определить точно. Большинство из тех, кто им пользуется, согласились бы, что натурализм отвергает объяснения с привлечением сверхъестественных сущностей и полагается, напротив, исключительно на свойства природного мира. Конечно, чтобы уточнить эту позицию, нам нужно обозначить четкие пределы того, что составляет природный мир, — а это проще сказать, чем сделать. Столы и деревья определенно располагаются в его пределах, но как насчет числа пять или Великой теоремы Ферма? Как насчет чувства радости или ощущения красного цвета? Как насчет идеалов неотчуждаемой свободы и человеческого достоинства?

С годами подобные вопросы породили множество вариаций на тему натурализма. Одна из крайних позиций гласит, что единственное законное знание о мире исходит из научных концепций и научного же анализа — иногда такую позицию называют сциентизмом. Эта позиция, кстати говоря, требует от своих сторонников точного определения терминов. Что входит в понятие науки? Ясно, что если считать наукой выводы, основанные на наблюдениях, опыте и рациональном мышлении, то границы науки выходят далеко за пределы тех дисциплин, которые обычно представлены на университетских кафедрах. Как вы можете догадаться, в результате от науки требуют решения непосильных задач.

В менее экстремальных подходах приверженность натурализму сочетается с различными организационными принципами. Философ Барри Страуд выступает за то, что он называет «широкий или непредвзятый натурализм», в котором объяснительные границы не установлены жестко с самого начала. Напротив, широкий натурализм сохраняет свободу выстраивать слои понимания, включающие в себя все, от материальных природных ингредиентов до психологических качеств и абстрактных математических утверждений, — все необходимое для объяснения наблюдений, опыта и анализа (Barry Stroud, "The Charm of Naturalism", Proceedings and Addresses of the American Philosophical Association 70, no. 2 [November 1996], 43–45). Философ Джон Дюпре защищает «плюралистический натурализм», который гласит, что мечта о единстве науки — опасный миф; напротив, наши объяснения должны вырастать из «разнообразных и перекрывающихся исследовательских проектов», охватывающих традиционные науки и выходящих за их пределы, вовлекая в себя, среди прочих дисциплин, историю, философию и искусство (John Dupré, "The Miracle of Monism", in Naturalism in Question, ed. Mario de Caro and David Macarthur [Cambridge, MA: Harvard University Press, 2004], 36–58). Стивен Хокинг и Леонард Млодинов ввели понятие «модельнозависимого реализма», которое описывает реальность как набор отдельных историй, каждая из которых основана на собственной модели или теоретической концепции объяснения наблюдательных данных в микромире частиц или макромире повседневных событий (Хокинг С., Млодинов Л. Высший замысел. — М.: АСТ, 2017). Физик Шон Кэрролл ввел «поэтический натурализм» для разговора об объяснениях, расширяющих научный натурализм включением в него языка и концепций, относящихся к различным сферам интересов (Кэрролл Ш. Вселенная. Происхождение жизни, смысл нашего существования и огромный космос. — СПб.: Питер, 2017). И, как указано в главе 1, примечание 4, Э. О. Уилсон использует термин «схождение», когда речь идет об использовании знаний из совершенно несопоставимых дисциплин для получения глубины понимания, недостижимой в других обстоятельствах.

Я не особый сторонник придумывания новых слов, но если бы мне нужно было как-то обозначить собственную точку зрения — ту самую, что будет направлять наш рассказ на протяжении всей книги, то я назвал бы ее иерархическим натурализмом (nested naturalism).

Иерархический натурализм, как станет ясно из этой и последующих глав, привержен ценности и универсальной применимости редукционизма. Он принимает как данность существование фундаментального единства в механизмах мира и постулирует, что такое единство будет обнаружено путем выполнения редукционистской программы до той глубины, до какой потребуется. Все в этом мире может быть описано в терминах фундаментальных составляющих природы, подчиняющихся ее фундаментальным законам. Тем не менее иерархический натурализм подчеркивает, что такое описание обладает ограниченной объяснительной силой. Есть много других уровней понимания, которые охватывают редукционистское объяснение. И в зависимости от исследуемых вопросов эти другие объяснительные истории могут давать гораздо более информативные описания, чем то, что дает редукционизм. Все описания должны быть взаимно непротиворечивы, но на более высоких уровнях могут появляться новые полезные концепции, не имеющие низкоуровневых коррелятов. К примеру, при изучении множества молекул воды концепция водяной волны и разумна, и полезна. Но при изучении отдельной молекулы воды она не имеет смысла. Аналогично при изучении насыщенных и разнообразных историй человеческого опыта иерархический натурализм свободно привлекает оценки с любых структурных уровней, которые оказываются наиболее информативными, одновременно гарантируя, что эти оценки укладываются в связное описание.

57

Всюду в книге, где речь заходит о «жизни», неявно подразумевается «жизнь, какой мы ее знаем на планете Земля», так что я не буду каждый раз об этом напоминать.

58

Один из значительных барьеров при формировании атомов с большими атомными весами состоит в том, что не существует стабильных ядер, которые содержали бы пять или восемь нуклонов. По мере того как ядра тяжелеют, последовательно добавляя к себе протоны и нейтроны (ядра водорода и гелия), нестабильность на пятой и восьмой ступенях создает узкое место, сдерживающее нуклеосинтез Большого взрыва.

59

Цифры, которые я привел, дают относительную распространенность по массе. Поскольку масса каждого ядра гелия примерно вчетверо больше массы каждого ядра водорода, подсчет числа атомов водорода в сравнении с числом атомов гелия дает другие значения, приблизительно 92 % водорода и 8 % гелия.

60

В полном виде эту историю см. в: Helge Kragh, "Naming the Big Bang," Historical Studies in the Natural Sciences 44, no. 1 (February 2014):3

Крэг предполагает, что, хотя Хойл отдавал предпочтение собственной космологической теории (модели стационарного состояния, в которой Вселенная существовала всегда), термин «Большой взрыв» в его устах, возможно, не подразумевал насмешки. Может быть, Хойл использовал словосочетание «большой взрыв» всего лишь как удобный способ отличить собственную теорию от данного конкретного конкурента.

61

S. E. Woosley, A. Heger, and T. A. Weaver, "The evolution and explosion of massive stars", Reviews ofModern Physics 74 (2002): 1015.

62

В одном исследовании проанализированы сотни тысяч возможных траекторий и сделан вывод, что почти все они потребовали бы, чтобы Солнце вылетело из скопления с такой высокой скоростью, что оно либо потеряло бы свой протопланетный диск или, если бы планеты к тому моменту успели уже сформироваться, они разлетелись бы (Barbara Pichardo, Edmundo Moreno, Christine Allen, et al., "The Sun was not born in M67", The Astronomical Journal 143, no. 3 [2012]: 73). В другом исследовании, где выдвигается иное предположение о месте, где сформировалось само скопление M 67, делается вывод о том, что для отправки Солнца в путь достаточно было бы и меньшей скорости вылета, и на этой скорости планеты или протопланетный диск сохранились бы (Timmi G. Jorgensen and Ross P. Church, "Stellar escapers from M 67 can reach solar-like Galactic orbits," arxiv.org, arXiv:1905.09586).

63

В русскоязычной литературе чаще встречается название катархей (катархейский эон), от греч. Kαταρχέας — «ниже древнейшего», то есть древнее архея. — Прим. науч. ред.

64

A. J. Cavosie, J. W. Valley, S. A. Wilde, "The Oldest Terrestrial Mineral Record: Thirty Years of Research on Hadean Zircon from Jack Hills, Western Australia", in Earth's Oldest Rocks, ed. M. J. Van Kranendonk (New York: Elsevier, 2018), 255-78. Последние данные не противоречат оригинальному исследованию, описанному в: John W. Valley, William H. Peck, Elizabeth M. King, and Simon A. Wilde, "A Cool Early Earth," Geology 30 (2002): 351-54, а также в личном сообщении Джона Валли от 30 июля 2019 г.

65

Гейзенберг В. Физика и философия. — М.: Наука, 1989.

66

Борн М. Квантовая механика процессов столкновений. — Успехи физических наук. 1977. Вып. 122. С. 632–651. В первоначальном варианте статьи Борн связал квантовые волновые функции непосредственно с вероятностями, но в добавленном позже примечании он ввел поправку, так что соотношение стало включать квадрат нормы волновой функции.

67

Принцип запрета Вольфганга Паули, о котором мы будем говорить в главе 9, также важен для определения разрешенных квантовых орбиталей электронов вокруг ядра. Принцип запрета устанавливает, что никакие два электрона (в более общем варианте — никакие две частицы вещества одного вида) не могут пребывать в одном и том же квантовом состоянии. Вследствие этого отдельные квантовые орбитали, определяемые уравнением Шредингера, могут вместить в себя максимум один электрон каждая (или, учитывая степень свободы, связанную со спином, два электрона). Многие из этих орбиталей имеют одинаковую энергию, которая в нашей аналогии соответствует местам, расположенным на одном уровне квантового амфитеатра. Но когда каждое из этих мест оказывается занятым — когда каждая квантовая орбиталь заполнена, этот уровень уже не может принять дополнительных электронов.

68

Вспомнив школьную химию, вы поймете, что я несколько упростил ситуацию. В более подробном описании я отметил бы, что (благодаря квантовой механике) атомы организуют ярусы своего амфитеатра в различные подъярусы с разными значениями момента импульса. Иногда более высокий ярус с меньшим моментом импульса обладает меньшей энергией, чем более низкий ярус с большим моментом импульса. В этом случае электроны займут сначала такой подъярус более высокого яруса и лишь затем завершат заполнение более низкого яруса.

69

Точнее говоря, стабильность достигается, когда заполнена внешняя подоболочка атома (его валентная оболочка). Вы, возможно, помните из школьной программы «правило октетов», согласно которому атомам обычно нужны в валентной оболочке восемь электронов, в результате чего они, чтобы получить именно это число, готовы отдавать, получать или делить электроны с другими атомами.

70

Albert Szent-Gyorgyi, "Biology and Pathology of Water," Perspectives in Biology and Medicine 14, no. 2 (1971): 239.

71

Главным объектом нашего внимания в этой главе будут растения и животные, состоящие из эукариотических клеток (клеток, имеющих ядро). Исследователи говорят, что их родословные сходятся на «последнем общем предке эукариот», или LECA. В более общем плане, если мы рассмотрим также бактерии и археи, то родословные сойдутся дальше в прошлом на «последнем универсальном общем предке», или LUCA.

72

A. Auton, L. Brooks, R. Durbin, et al., "A global reference for human genetic variation," Nature 526, no. 7571 (October 2015): 68.

73

Ученые разработали несколько вариантов сравнения ДНК разных биологических видов. При одном подходе сравниваются пары оснований для тех генов, которые у этих видов общие (такой метод дает примерно 1 % генетических различий между человеком и шимпанзе), тогда как при другом сравниваются геномы целиком (здесь генетическая разница между человеком и шимпанзе получается несколько больше).

74

Точнее, исследователи описывают код, о котором говорится в следующем абзаце, как «почти» универсальный, имея в виду тот факт, что в некоторых особых случаях все же были обнаружены вариации. Тем не менее даже эти скромные модификации обладают такой же базовой структурой кода, как та, что описана в этой главе.

75

При трехбуквенных кодах и четырех различных буквах существует 64 возможные комбинации. Но поскольку эти последовательности кодируют только 20 аминокислот, одну и ту же аминокислоту могут обозначать — и действительно обозначают — несколько различных комбинаций. Исторически среди первых работ по расшифровке генетического кода можно назвать: F. H. C. Crick, Leslie Barnett, S. Brenner, and R. J. Watts-Tobin, "General nature of the genetic code for proteins", Nature 192 (1961): 1227-32; J. Heinrich Matthaei, Oliver W. Jones, Robert G. Martin, and Marshall W. Nirenberg, "Characteristics and Composition of Coding Units", Proceedings of the National Academy of Sciences 48, no. 4 (1962): 666-77. К середине 1960-х гг. усилиями множества исследователей, в первую очередь Маршалла Ниренберга, Роберта Холли и Хара Гобинда Хораны, расшифровка была завершена, за что эти три ведущих исследователя в 1968 г. были удостоены Нобелевской премии.

76

Точное определение гена до сих пор является предметом дебатов. Помимо информации, кодирующей белок, ген содержит вспомогательные последовательности (не обязательно прилегающие к кодирующей области), способные влиять на конкретный способ использования клеткой кодирующих данных (к примеру, увеличивающие или уменьшающие скорость производства заданного белка, а также выполняющие другие регуляторные функции).

77

Ключевую гипотезу о протонных электрических токах, обеспечивающих синтез АТФ, предложил британский биохимик Питер Митчелл, который в 1978 г. был удостоен за это Нобелевской премии (P. Mitchell, "Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism," Nature 191 [1961]: 144-48.) Хотя некоторые детали гипотезы Митчелла требовали дальнейшей доработки, Нобелевская премия была присуждена ему за проникновение в механизм «переноса биологической энергии». Митчелл был необычным ученым. Наевшись досыта различных пустопорожних качеств научного мира (в чем я его вполне понимаю), он основал независимую благотворительную компанию Glynn Research, где он сам вместе с различными коллегами и наемными работниками числом до десяти проводил биохимические исследования. Захватывающие подробности его жизни можно найти в книге: John Prebble and Bruce Weber, Wandering in the Gardens of the Mind: Peter Mitchell and the Making of Glynn (Oxford: Oxford University Press, 2003). Подробности современного представления об извлечении энергии и ее переносе в пределах клетки см., к примеру: Альбертс Б., Джонсон А., Льюис Д. и др. Молекулярная биология клетки. — М., Ижевск: ИКИ, 2013. Информированный читатель отметит одну особенность, характеризующую универсальность этого процесса: извлечение энергии путем ферментации (процесс извлечения энергии без использования кислорода).

78

Дарвин Ч. Происхождение видов путем естественного отбора. — М.: Тайдекс Кё, 2003.

79

В этой аналогии я представляю себе компанию, пошагово разрабатывающую свой продукт путем случайных проб и ошибок. Но существуют и другие способы, в которые метод проб и ошибок может быть включен более эффективно. К примеру, при разработке различных вычислительных алгоритмов компьютерщики начинают с некоторого алгоритма, модифицируют его случайным образом, отбрасывают те модификации, при которых скорость расчетов снижается, а затем дальше модифицируют те, что остались (модифицированные алгоритмы, при которых скорость расчетов повышается). Выполняя эту процедуру методом последовательных приближений, мы получаем подход, подобный естественному отбору, который позволяет опробовать огромное множество возможных вариантов и дает в результате более быстрые вычислительные процедуры. Разумеется, изучить модифицированные алгоритмы на компьютере намного дешевле, чем попробовать продать случайным образом модифицированный продукт на рынке. Таким образом, слепой метод проб и ошибок может быть полезной стратегией в различных задачах при условии, что цена его как по времени, так и по ресурсам, невелика и позволяет гонять случайные модификации круг за кругом (или если множество модификаций можно проверять одновременно).

80

Eric T. Parker, Henderson J. Cleaves, Jason P. Dworkin, et al., "Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment", Proceedings of the National Academy ofSciences 108, no. 14 (апрель 2011): 5526.

81

Клеточные стенки могут сформироваться естественным образом из обычных химических соединений, таких как жирные кислоты, у которых один конец стремится к контакту с водой, а другой ее избегает. Такое отношение к воде может побудить эти молекулы образовывать барьеры толщиной в две молекулы, в которых водолюбивые концы молекул обращены наружу, а водоотталкивающие концы удерживают оба слоя вместе, — клеточные стенки. Рассказ о сценарии РНК-мира см.: G. F. Joyce and J. W. Szostak, "Protocells and RNA SelfReplication," Cold Spring Harbor Perspectives in Biology 10, no. 9 (2018).

82

Ряд исследователей, включая химика Сванте Аррениуса, астронома Фреда Хойла, астробиолога Чандру Викрамасингха и физика Пола Дэвиса, предполагают, что некоторые из падающих камней сами могли нести на себе чрезвычайно устойчивые семена жизни — готовые молекулы, способные самовоспроизводиться и служить катализаторами реакций. Само по себе это предположение очень интересно, поскольку подразумевает, что космические камни, возможно, занесли жизнь на огромное количество планет в разных уголках космоса, однако оно не приближает нас к разгадке происхождения жизни, а лишь сдвигает вопрос в сторону происхождения этих «семян».

83

David Deamer, Assembling Life: How Can Life Begin on Earth and Other Habitable Planets? (Oxford: Oxford University Press, 2018).

84

A. G. Cairns-Smith, Seven Clues to the Origin of Life (Cambridge: Cambridge University Press, 1990).

85

W. Martin and M. J. Russell, "On the origin of biochemistry at an alkaline hydrothermal vent", Philosophical Transactions of the Royal Society B 367 (2007): 1187.

86

Шредингер Э. Что такое жизнь? — М.: Атомиздат, 1972.

87

Энергия, приносимая входящими фотонами, более концентрированна (их длины волн меньше и лежат в видимой части спектра, а количество их меньше) и, соответственно, более высококачественна; энергия, уносимая исходящими фотонами, более разрежена (длины их волн больше и лежат в инфракрасной части спектра, и по количеству их больше) и, соответственно, имеет более низкое качество. Таким образом, полезность солнечной энергии заключается не только в большом ее количестве, поступающем от Солнца, но и в высоком качестве, поскольку эта энергия несет в себе намного меньше энтропии, чем теплота, которую Земля излучает обратно в пространство. Как отмечалось в этой главе, на каждый фотон, который Земля получает от Солнца, приходится несколько десятков тех, которые она испускает в пространство. Чтобы оценить это число, отметим, что солнечные фотоны испускаются средой, температура которой составляет около 6000 K (температура поверхности Солнца), тогда как те, что излучаются Землей, исходят из среды с температурой около 285 K (температура поверхности Земли). [Средняя температура, с которой Земля излучает в космос, даже ниже — около 255 K, поскольку из-за парниковых газов атмосфера не вполне прозрачна в инфракрасном диапазоне и значительная часть теплового излучения уходит с высоты нескольких километров, где температура заметно ниже, чем на поверхности. — Прим. науч. ред.] Энергия фотона пропорциональна этим температурам (если рассматривать фотоны как идеальный газ из частиц), следовательно, отношение числа фотонов, принятых Землей от Солнца, к числу излученных обратно задается отношением двух температур, 6000 K/285 K, что составляет около 21 фотона.

88

Шредингер Э. Что такое жизнь? — М.: Атомиздат, 1972.

89

Albert Einstein, Autobiographical Notes (La Salle, IL: Open Court Publishing, 1979), 3. Красивое современное изложение принципов термодинамики в контексте живых систем с интересными примерами, иллюстрирующими многие существенные концепции, которые мы привлекаем, см.: Philip Nelson, Biological Physics: Energy, Information, Life (New York: W. H. Freeman and Co., 2014).

90

J. L. England, "Statistical physics of self-replication", Journal of Chemical Physics 139 (2013): 121923. Nikolay Perunov, Robert A. Marsland, and Jeremy L. England, "Statistical Physics of Adaptation", Physical Review X 6 (June 2016): 021036-1; Tal Kachman, Jeremy A. Owen, and Jeremy L. England, "Self-Organized Resonance During Search of a Diverse Chemical Space", Physical Review Letters 119, no. 3 (2017): 038001-1. См. также: G. E. Crooks, "Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences", Physical Review E 60 (1999): 2721; and C. Jarzynski, "Nonequilibrium equality for free energy differences", Physical Review Letters 78 (1997): 2690.

91

Ингленд указывает также, что, поскольку физическая структура живого не просто упорядочена в какой-то момент, но поддерживает свою упорядоченность на протяжении долгого времени — какое-то время даже после смерти, значительная часть отходов бросовой энергии, которую вырабатывает живой мир, является, возможно, побочным продуктом строительства подобных стабильных структур. Поэтому вероятно, что для жизни доминирующий вклад в энтропийный тустеп связан с формированием структур вкупе с непрерывным сохранением гомеостаза. Обратите также внимание, что, хотя живым системам необходимо потреблять высококачественную энергию, им необходимо также, чтобы эта энергия была в такой форме, которая не W ТЛ W нарушает внутренней организации системы. В качестве наглядной иллюстрации: стеклянный бокал можно заставить вибрировать при помощи звука подходящей частоты, но если этот звук будет нести в себе слишком много энергии, то бокал лопнет. Чтобы избежать аналогичного исхода, некоторые степени свободы в диссипативной системе могут складываться в конфигурации, которые позволяют избежать резонанса с энергией, поступающей из окружающей среды. Живой мир предполагает разумный баланс между этими крайностями.

92

Камю А. Посторонний. Миф о Сизифе. Калигула. Падение. — М.: АСТ, 2014.

93

Бирс А. Словарь сатаны. Рассказы. — М.: Центрполиграф, 2003.

94

Дюрант В. Жизнь Греции. — М.: АО «КРОН-пресс», 1997. С. 362–363. [В книге В. Дюранта эта мысль Демокрита дана в модифицированной формулировке. В ней не вполне ясно, что означает рефрен «сладкое есть сладкое.». Более аутентичные версии можно найти в работах специалистов по Демокриту. Так, Г. К. Ваммель приводит формулировку в передаче Секста Эмпирика: «Лишь в общем мнении существует сладкое, в мнении — горькое и в мнении — теплое, в мнении — холодное, в мнении — цвет, в действительности же существуют только атомы и пустота» (Ваммель Г. К. Демокрит в его фрагментах и свидетельствах древности. — М.: ОГИЗ, 1935. С. 166). С. Я. Лурье приводит эту же мысль в передаче Галена: «Только считают, что существует цвет, что существует сладкое, что существует горькое, в действительности же — атомы и пустота» (Лурье С. Я. Демокрит. Тексты. Перевод. Исследование. М.: Наука, 1970. С. 226). — Прим. науч. ред.]

95

Поскольку я часто упоминаю математические уравнения, рассказывая о законах физики, имеет смысл кратко записать нашу самую проработанную версию этих уравнений. Даже если вы не понимаете этих обозначений, вам, возможно, будет интересно взглянуть, как выглядит математика в общем случае.

Запишем эйнштейновские уравнения поля из общей теории относительности ^ 2IV г 1и >где левая часть описывает кривизну пространства-времени, а также космологическую постоянную А, а правая — массу и энергию, которые являются источником кривизны (источником гравитационного поля). В этом выражении (и в тех, что за ним последуют) индексы, обозначенные греческими буквами, изменяются от 0 до 3, представляя четыре координаты пространства-времени.

Вот Максвелловы уравнения электромагнетизма: ^ ^ - ^ «Ли Э[аРро] — 0, где левые Части уравнений описывают электрическое и магнитное поля, а правая часть первого уравнения описывает электрические заряды, эти поля порождающие.

Уравнения сильного и слабого ядерных взаимодействий представляют собой обобщение уравнений Максвелла. Существенная новая черта состоит в том, что если в теории Максвелла мы можемзаписать напряженность поля1 «р р ^ У-' через Аа,известный как «векторный потенциал», то для ядерных силы есть набор напряженностей поля, а также набор векторных потенциалов, связанных формулой. Латинские индексы пробегают по генераторам алгебр Ли, обозначаемых SU (2) и SU (3) для слабого и сильного ядерных взаимодействий соответственно; а fabc суть структурные константы этих алгебр.

Квантово-механическое уравнение Шредингера выглядит так: 1Л^ = Н1 |/,Эх где Н — гамильтониан, а \|/ — волновая функция, норма (надлежащим образом нормализованная) которой в квадрате дает квантово-механические вероятности. Сплав квантовой механики и электромагнетизма, слабого и сильного ядерных взаимодействий, включающая также известные частицы вещества и частицу Хиггса, представляет собой Стандартную модель физики элементарных частиц. Обычно Стандартная модель описывается с помощью эквивалентного, но иного формализма, известного как интеграл по путям (пионером в этом подходе был физик Ричард Фейнман). Сплав квантовой механики и общей теории относительности — актуальная тема передовых исследований.

96

Августин А. Исповедь. — М.: Даръ, 2005. С. 327. (15, VIII, кн. X).

97

Thomas Aquinas, Questiones Disputatae de Veritate, questions 10–20, trans. James V. McGlynn, S. J. (Chicago: Henry Regnery Company, 1953).

98

Шекспир У. Мера за меру. — М.: Эксмо-пресс, 1999.

99

Письмо Готфрида Лейбница Христиану Гольдбаху от 17 апреля 1712 г.

100

Otto Loewi, "An Autobiographical Sketch", Perspectives in Biology and Medicine 4, no. 1 (Autumn 1960): 3-25. Лёви ошибочно написал, что сон приснился ему в ночь на Пасху 1920 г., хотя на самом деле это произошло в 1921 г.

101

Подробно об этом см.: Элленберг Г. Ф. Открытие бессознательного. История и эволюция динамической психиатрии. В 2 ч. — М.: Информационный центр психоаналитической культуры, 2011.

102

Peter Halligan and John Marshall, "Blindsight and insight in visuo-spatial neglect," Nature 336, no. 6201 (December 22–29, 1988): 766-67.

103

Виновником рождения этой легенды был Джеймс Викари, заявивший в 1957 г., что подпороговая реклама, призывающая зрителей есть попкорн и пить кока-колу, давала значительный рост продаж того и другого. Позже Викари признал, что эти утверждения не были обоснованными.

104

Исследователи установили способность широкого ряда подпороговых стимулов влиять на осознанные действия. В этом абзаце я описываю один пример подпорогового влияния на простые числовые решения. Но аналогичное подпороговое влияние было продемонстрировано и при распознавании слов (см., к примеру: Anthony J. Marcel, "Conscious and Unconscious Perception: Experiments on Visual Masking and Word Recognition", Cognitive Psychology 15 (1983): 197237), а также при восприятии и оценке широкого спектра изображений и объектов.

105

L. Naccache and S. Dehaene, "The Priming Method: Imaging Unconscious Repetition Priming Reveals an Abstract Representation of Number in the Parietal Lobes", Cerebral Cortex 11, no. 10 (2001): 966-74; L. Naccache and S. Dehaene, "Unconscious Semantic Priming Extends to Novel Unseen Stimuli", Cognition 80, no. 3 (2001): 215-29. Обратите внимание на то, что в этих экспериментах начальный стимул становится подпороговым благодаря маскирующей процедуре, при которой до и после него на экране демонстрируются геометрические фигуры. Обзор см.: Stanislas Dehaene and Jean-Pierre Changeux, "Experimental and Theoretical Approaches to Conscious Processing", Neuron 70, no. 2 (2011): 200-27, and Stanislas Dehaene, Consciousness and the Brain (New York: Penguin Books, 2014).

106

Исаак Ньютон, письмо к Генри Ольденбургу от 6 февраля 1671 г. http://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00003

107

Философы, психологи, мистики и другие мыслители принимали разные определения сознания. В зависимости от контекста некоторые из определений могут оказаться более полезными, чем то, которое принимаем мы, некоторые — менее полезными. Мы здесь сосредоточены на «трудной проблеме», и для нашей цели описание, данное в этой главе, вполне подходит.

108

Моя ссылка на протоны, нейтроны и электроны — краткое обозначение состояния моего мозга в терминах его самых мелких природных частиц, независимо от того, чем эти ингредиенты (частицы, поля, струны и т. п.) могут оказаться.

109

Thomas Nagel, "What Is It Like to Be a Bat?" Philosophical Review 83, no. 4 (1974): 435-50.

110

Когда я говорю об объяснении тайфунов или вулканов — или любых других макроскопических тел — в терминах элементарных частиц, я делаю это с позиции «в принципе». Как давно уже убедительно показала теория хаоса, крохотные различия в начальных условиях группы частиц могут породить громадную разницу в их последующей конфигурации. Это верно даже в отношении небольших групп. На практике этот факт существенно влияет на то, какие предсказания мы можем делать, но в этом нет никакой загадки. Теория хаоса позволяет нам сделать значительные и глубокие выводы, но эта теория разработана не для того, чтобы заполнить очевидную брешь в наших представлениях о фундаментальных физических законах.

Однако, когда дело доходит до сознания, проблема, поднятая в этой главе (как безмозглые частицы могут формировать осознанные ощущения?), натолкнула некоторых исследователей на мысль о существовании бреши куда более фундаментального свойства. Они утверждают, что ощущения сознания не могут проистекать из действий большого количества частиц, несмотря на их возможные скоординированные движения.

111

Frank Jackson, "Epiphenomenal Qualia," Philosophical Quarterly 32 (1982): 127-36.

112

Daniel Dennett, Consciousness Explained (Boston: Little, Brown and Co., 1991), 399–401.

113

David Lewis, "What Experience Teaches", Proceedings of the Russellian Society 13 (1988): 29–57. Перепечатано в: David Lewis, Papers in Metaphysics and Epistemology (Cambridge: Cambridge University Press, 1999): 262-90, где автор опирается на более ранние выводы в: Laurence Nemirow, "Review of Nagel's Mortal Questions", Philosophical Review 89 (1980): 473-77.

114

Laurence Nemirow, "Physicalism and the cognitive role of acquaintance", in Mind and Cognition, ed. W. Lycan (Oxford: Blackwell, 1990), 490-99.

115

Frank Jackson, "Postscript on Qualia", in Mind, Method, and Conditionals, Selected Essays (London: Routledge, 1998), 76–79.

116

В статье 1995 г. Чалмерс писал о витализме и об электромагнетизме как о полезных ссылках при размышлениях над трудной проблемой. Ключевая отличительная черта трудной проблемы, как Чалмерс определил ее, состоит в том, что она непременно обращается к субъективным качествам опыта и таким образом, по его утверждению, не может быть разрешена путем обретения более полного представления об объективных функциях мозга. В этом разделе мне кажется полезным очертить проблему несколько иначе, противопоставив открытые вопросы, которые наука может разрешить, по крайней мере в принципе, в рамках своей уже установившейся парадигмы (определяющей область, где реальность, какой мы ее знаем, имеет место), открытым вопросам, для решения которых эта парадигма может оказаться недостаточной. При такой постановке вопроса проблема является трудной, если для ее решения мы должны фундаментально изменить существующий подход к описанию мира (в примере с электричеством и магнетизмом ученым пришлось ввести принципиально новые качества — заполняющие пространство электрические поля, магнитные поля и электрические заряды). В сравнении с утверждением Чалмерса о том, что трудная проблема не может быть решена при помощи исключительно материальных составляющих нашего фундаментального физического описания реальности, подход, который представляю я, хотя и отличается, в основном говорит о том же. Заметьте также, что, по Чалмерсу, витализм постепенно исчез именно потому, что в вопросе, которому он был посвящен, речь действительно шла об объективной функции: как могут физические составляющие осуществлять объективные функции жизни? Когда наука стала лучше понимать функциональные возможности физических составляющих (биохимических молекул и т. п.), загадка, которую витализм пытался решить, перестала казаться такой неразрешимой. Согласно Чалмерсу, с трудной проблемой ничего подобного не произойдет. Физикалисты не разделяют это мнение и, соответственно, ожидают, что прогресс в понимании функций мозга позволит проникнуть и в тайны субъективного опыта. Подробнее см.: David Chalmers, "Facing Up to the Problem of Consciousness", Journal of Consciousness Studies 2, no. 3 (1995): 200-19, и David Chalmers, The Conscious Mind: In Search of a Fundamental Theory (Oxford: Oxford University Press, 1997), 125.

117

В клинической литературе не счесть случаев, в которых удаление конкретных секций мозга приводит к потере целевых функций мозга. Один из таких случаев я наблюдал лично. После хирургической операции на мозге и удаления злокачественной опухоли моя жена Трейси временно потеряла способность называть довольно большое количество обычных бытовых предметов. По ее словам, операция как будто отрезала у нее часть хранилища данных, где лежали знания о названиях различных вещей. Она по-прежнему могла представить себе зрительный образ предмета, но была не в состоянии назвать его.

118

Giulio Tononi, Phi: A Voyage from the Brain to the Soul (New York: Pantheon, 2012); Christof Koch, Consciousness: Confessions of a Romantic Reductionist (Cambridge, MA: MIT Press, 2012); Masafumi Oizumi, Larissa Albantakis, and Giulio Tononi, "From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0", PLoS Computational Biology 10, no. 5 (May 2014).

119

Scott Aaronson, "Why I Am Not an Integrated Information Theorist (or, The Unconscious Expander)", Shtetl-Optimized. https://www.scottaaronson.com/blog/?p=1799.

120

Michael Graziano, Consciousness and the Social Brain (New York: Oxford University Press, 2013); Taylor Webb and Michael Graziano, "The attention schema theory: A mechanistic account of subjective awareness", Frontiers in Psychology 6 (2015): 500.

121

Человеческое восприятие цвета сложнее, чем можно предположить по моему краткому описанию. В наших глазах есть рецепторы, чувствительность которых изменяется с частотой света. Одни из них наиболее чувствительны к самым большим видимым частотам, другие — к самым маленьким, а третьи — к промежуточным между ними. Цвета, которые воспринимает наш мозг, возникают при смешении откликов от разных рецепторов.

122

Как и в предыдущем примечании, это упрощение, поскольку «красный цвет» есть интерпретация мозгом смешанного набора откликов на различные частоты, принимаемые его зрительными рецепторами. Тем не менее то упрощенное описание доносит до нас главное: наше ощущение цвета — это полезное, но грубое представление физических данных, которые приносят в наши глаза электромагнитные волны.

123

David Premack and Guy Woodruff, "Does the chimpanzee have a theory of mind?" Cognition and Consciousness in Nonhuman Species, special issue of Behavioral and Brain Sciences 1, no. 4 (1978): 515-26.

124

Daniel Dennett, The Intentional Stance (Cambridge, MA: MIT Press, 1989).

125

См., к примеру, модель множественных набросков Деннета в: Daniel Dennett, Consciousness Explained (Boston: Little, Brown & Co., 1991), теорию глобального рабочего пространства Баара в: Bernard J. Baars, In the Theater of Consciousness (New York: Oxford University Press, 1997) и теорию оркестрованной объективной редукции Стюарта Хамероффа и Роджера Пенроуза в: Stuart Hameroff and Roger Penrose, "Consciousness in the universe: A review of the 'Orch OR' theory". Physics of Life Reviews 11 (2014): 39–78.

126

Хотя к уравнению Шредингера можно свести всю квантовую механику, в прошедшие десятилетия над ней работали многие физики, которым удалось серьезно развить ее математический аппарат. Успешное предсказание, о котором я говорю, исходит из расчетов в той области квантовой механики, которая известна как квантовая электродинамика — сплав квантовой механики и теории электромагнетизма Максвелла.

127

Можно выразить это иначе: согласно квантовой механике, электрон до его измерения не имеет вообще никакого местоположения в традиционном смысле этого слова.

128

Как указывалось в примечании 5 к главе 3, существует вариант квантовой механики, в котором частицы сохраняют четкие и определенные траектории, предлагая таким образом потенциальное решение проблемы квантового измерения. До сих пор у этого подхода, известного как механика Бома или де Бройля — Бома, есть небольшое число сторонников по всему миру. Хотя это темная лошадка, я бы не стал списывать механику Бома со счетов как подход, который, в принципе, может занять в будущем главенствующее место. Еще один подход к проблеме квантового измерения — многомировая интерпретация, в которой при измерении реализуются все потенциальные исходы, разрешенные квантово-механической эволюцией. И третий подход — теория Гирарди—Римини—Вебера (ГРВ-теория); эта теория вводит новый фундаментальный физический процесс, который редко, но случайно схлопывает вероятностную волну для отдельной частицы. Для небольших групп частиц процесс происходит слишком редко, чтобы повлиять на результаты успешных квантовых экспериментов. Но для больших совокупностей частиц процесс идет гораздо быстрее, порождая своеобразный эффект домино, который и выбирает ровно один исход для реализации в макромире. Дополнительные подробности см., к примеру, в книге «Ткань космоса», глава 7.

129

Fritz London and Edmond Bauer, La théorie de l'observation en mécanique quantique, No. 775 of Actualités scientifiques et industrielles; Exposés de physique générale, publiés sous la direction de Paul Langevin (Paris: Hermann, 1939), в переводе в книге: John Archibald Wheeler and Wojciech Zurek, Quantum Theory and Measurement (Princeton: Princeton University Press, 1983), 220.

130

Вигнер Е. Этюды о симметрии. — М.: Мир, 1971.

131

Аристотель описывал действие как «добровольное», если это действие зарождалось внутри данного субъекта и проистекало из его собственных размышлений — точка зрения, оказавшая, со значительными доработками, существенное влияние. См.: Аристотель. Никомахова этика / Пер. Н. Брагинской. — М.: Эксмо-пресс, 1997. Аристотель не причислял детерминистические законы физики ко внешним силам, способным сделать действие недобровольным, но те (включая и меня), кто все же рассматривает такие фундаментальные, хотя и безличные влияния, считают, что его представление о «добровольном» не согласуется с их интуитивным представлением о свободной воле

132

Как и в примечании 17 к этой главе, когда я говорю о частицах, составляющих макроскопический объект, то на самом деле речь идет о полном физическом состоянии этого объекта. В классической теории это состояние задается координатами и скоростями фундаментальных составляющих объекта. В квантовой механике состояние задается волновой функцией, описывающей составляющие объекта. Заметив, что я делаю упор на частицы, вы, возможно, вспомните о полях. Читатель с техническим образованием, возможно, в курсе, что, согласно квантовой теории, влияние поля передается частицами (к примеру, действие электромагнитного поля передается фотонами); более того, квантовая теория поля также показывает, что макроскопическое поле может быть описано математически как определенная конфигурация частиц — так называемое когерентное состояние частиц. Так что моя ссылка на «частицы» подразумевает и поля тоже. Информированный читатель заметит также, что некоторые квантовые свойства, такие как квантовая запутанность, могут описать состояния объекта в квантовом варианте более тонко, чем в классическом. Мы в нашей дискуссии по большей части можем игнорировать эти нюансы; все, что нам нужно, — законопослушное единообразное развитие физического мира.

133

Точнее говоря, вероятность того, что частицы камня сговорятся соскочить со скамейки, настолько до нелепости мала, что на временных масштабах, представляющих для нас интерес, статистическую возможность того, что камень меня спасет, можно не учитывать.

134

В философской литературе множество компатибилистских гипотез. Среди них подход, который я описываю, ближе всего к тому, что предложил и разработал Дэниел Денет, к книгам которого я вас направляю за более подробным описанием: Daniel Dennett, Freedom Evolves (New York: Penguin Books, 2003), а также Elbow Room (Cambridge, MA: MIT Press, 1984). Я размышлял над этими идеями с тех самых пор, когда меня впервые подтолкнула к ним Луиза Восгерчян, одна из моих самых влиятельных учителей. Восгерчян — профессор музыки в Гарварде — глубоко интересовалась тем, как научные открытия связаны с эстетическими ощущениями; она попросила меня написать о человеческой свободе и творческом начале с точки зрения современной физики.

135

Искусственный интеллект и машинное обучение иллюстрируют этот момент еще нагляднее. Исследователи разработали алгоритмы для игр, таких как шахматы или го, которые способны дополняться на основе анализа успеха или неудачи предыдущих ходов. Внутри компьютера, где работает такой алгоритм, у нас нет ничего, кроме частиц, двигающихся туда и сюда под полным контролем физических законов. Тем не менее алгоритм улучшается. Алгоритм учится. Ходы алгоритма становятся творческими. Мало того, настолько творческими, что после нескольких часов такой внутренней доработки лучшие образцы способны продвинуться в игре от уровня начинающего игрока до победы над игроками мирового класса. См.: David Silver, Thomas Hubert, Julian Schrittwieser, et al., "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play", Science 362 (2018): 1140-44.

136

Речь здесь о том, что если «я» есть моя конфигурация частиц, то, когда эта конфигурация меняется, как по организации, так и по составу, остаюсь ли я самим собой? Это вариант еще одного из важнейших вопросов философии — вопроса личной идентичности во времени, — на который существует широкий спектр взглядов и откликов. Мне нравится подход Роберта Нозика, в котором, если воспользоваться несколько формальным языком, мы распознаем мое будущее «я», минимизируя функцию расстояния по пространству кандидатов на эту роль в поисках лица, которое «наиболее точно продолжает» существование, что я вел до этого момента. Разумеется, принципиально важно определить функцию расстояния, и Нозик отмечает, что люди, которые по-разному относятся к определяющим аспектам личности, могут сделать здесь разный выбор. Во многих случаях интуитивное представление о том, кто «наиболее точно продолжает» меня, адекватно, но, в принципе, можно сконструировать искусственные ситуации, способные поставить в тупик. Представьте, к примеру, сбой транспортера, в результате которого в пункте назначения возникнут две идентичные копии меня. Который набор частиц при этом будет «настоящим» мной? В этом случае, считает Нозик, меня, возможно, больше не будет, за отсутствием единственного ближайшего продолжателя. Однако, поскольку меня устраивает неуникальная минимизация функции расстояния, будет решено, скорее всего, что обе копии — это я. Для понятия «я», которое использовалось в этой главе, интуитивное представление о личной идентичности близко к позиции Нозика, поскольку различные наборы частиц, которые мы обозначили бы интуитивно, скажем, «Брайан Грин» на протяжении всей моей жизни, действительно являются наиболее точными продолжениями.

См.: Robert Nozick, Philosophical Explanations (Cambridge, MA: Belknap Press, 1983), 29–70.

137

Эта дискуссия поднимает вопрос: должны ли вы отвечать за последствия поведения, которое ваши сограждане или общество считает неприемлемым. Философы давно обсуждают вопросы, возникающие на стыке свободы воли, моральной ответственности и роли наказания. Вопросы эти сложны и противоречивы. Если коротко, мое мнение таково: по причинам, приведенным в данной главе, ваши действия — хорошие или дурные — это ваша ответственность, даже при отсутствии свободы воли. Вы — это частицы, из которых вы состоите, и если ваши частицы делают что-то предосудительное, это значит, что что-то предосудительное делаете вы. Настоящий вопрос в таком случае состоит в том, какими должны быть последствия? Оставляя в стороне тот факт, что последствия действий также не определяются свободной волей, вопрос в том, должны ли вы нести наказание. Единственный ответ, который представляется мне разумным, — более того, единственный подход к ответу, который представляется мне разумным, — состоит в том, что наказание должно исходить из защиты общественных интересов, включая предотвращение будущих случаев неприемлемого поведения. Опять же, свобода воли сравнима с обучением; Roomba обучается, как и люди. Сегодняшние переживания причинно связаны со вчерашними действиями. Так что если наказание предотвращает дальнейшие неприемлемые действия или удерживает вас и/или других от таких действий, значит, при помощи наказания нам удается привести общество к лучшему состоянию. Аналогичные соображения применимы и к «лабораторным случаям», которые часто упоминают в таких дискуссиях и в которых неприемлемое поведение вызывается уважительными причинами (опухоль мозга, принуждение, шизофрения, мозговые импланты, управляемые гнусными пришельцами, и т. п.), казалось бы, они должны освобождать правонарушителя от ответственности. Из сказанного выше и из обсуждения в главе следует, однако, что такие люди ответственны за свои действия. Их частицы делали неприемлемые вещи. А их частицы и есть они сами. Тем не менее каждый конкретный случай необходимо рассматривать подробно, поскольку, возможно, из-за уважительных причин просто не существует такого наказания, которое принесло бы пользу. Если ваше неприемлемое поведение объясняется опухолью мозга, то наказание, скорее всего, не поможет удержать вас от сходного поведения в сходных обстоятельствах в будущем. А если мы сможем устранить опухоль, вы больше не будете представлять никакой угрозы, так что наказание не даст обществу никакой дополнительной защиты. Короче говоря, наказание должно служить практической цели.

138

Alice Calaprice, ed., The New Quotable Einstein (Princeton: Princeton University Press, 2005), 149.

139

Вертгеймер М. Продуктивное мышление. — М.: Прогресс, 1987.

140

Витгенштейн Л. Логико-философский трактат. — М.: АСТ, 2018.

141

Toni Morrison, Nobel Prize lecture, 7 December 1993. https://www.nobelprize.org/prizes/literature/1993/morrison/lecture/

142

Цитата из сказки «Паутина Шарлотты» Элвина Брукса Уайта. — Прим. науч. ред.

143

С англ. «Мадам, я Адам!». — Прим. пер.

144

Дарвин писал: «Первобытный человек, или, вернее, один из древнейших родоначальников человека, вероятно, впервые употребил свой голос, производя настоящие музыкальные кадансы, т. е. распевая». И добавлял: «Такого рода способность применялась преимущественно во время ухаживания и служила для выражения различных эмоций, например любви, ревности, радости или как вызов для соперников». См.: Дарвин 4. Происхождение человека и половой отбор // Сочинения. Т. 5. — М.: АН СССР, 1953. С. 205.

145

В апрельском выпуске 1869 г. Quarterly ReviewУоллес, говоря о движущих силах эволюции — «законах изменчивости, воспроизведения и выживания», утверждал, что, как отмечалось в этой главе, «мы должны, следовательно, признать возможность того, что в развитии рода человеческого Высший Разум применил те же законы для более благородной цели». См.: Alfred Russel Wallace, "Sir Charles Lyell on geological climates and the origin of species", Quarterly Review 126 (1869): 359-94.

146

Joel S. Schwartz, "Darwin, Wallace, and the Descent of Man", Journal of the History of Biology 17, no. 2 (1984): 271-89.

147

Charles Darwin, letter to Alfred Russel Wallace, 27 March 1869. https://www.darwinproject.ac.uk/letter/?docId=letters/DCP-LETT-6684.xml; query=child;brand=default.

148

Dorothy L. Cheney and Robert M. Seyfarth, How Monkeys See the World: Inside the Mind of Another Species (Chicago: University of Chicago Press, 1992). Запись этих сигналов тревоги можно послушать на веб-страничке Би-би-си: https://www.bbc.co.uk/sounds/play/p016dgw1.

149

Рассел Б. Человеческое познание: его сфера и границы. — М.: ТЕРРА, Кн. клуб: Республика, 2000. С. 66.

150

R. Berwick and N. Chomsky, Why Only Us? (Cambridge, MA: MIT Press, 2015). Хотя некоторые задавались вопросом, не противоречит ли необходимость в сравнительно быстрых биологических переменах, подразумеваемая этой гипотезой, нашим представлениям об эволюции, Хомский возражал, что она вполне согласуется с современным неодарвинистским взглядом, который принимает такие биологические эпизоды, как формирование глаза, хотя они и отклоняются от традиционного взгляда, что все в эволюции должно происходить медленно и постепенно.

151

S. Pinker and P. Bloom, "Natural language and natural selection", Behavioral and Brain Sciences 13, no. 4 (1990): 707-84; Steven Pinker, The Language Instinct (New York: W. Morrow and Co., 1994); Steven Pinker, "Language as an adaptation to the cognitive niche", in Language Evolution: States of the Art, ed. S. Kirby and M. Christiansen (New York: Oxford University Press, 2003), 16–37.

152

К примеру, как отметил лингвист и специалист по психологии развития Майкл Томаселло, «все языки мира, безусловно, имеют между собой что-то общее. Но эти общие черты исходят не из какой-то универсальной грамматики, но, скорее, из универсальных аспектов человеческого познания, социального взаимодействия и обработки информации — все это по большей части уже существовало у людей прежде, чем возникло что-либо похожее на современные языки».

Michael Tomasello, "Universal Grammar Is Dead", Behavioral and Brain Sciences 32, no. 5 (October 2009): 470-71.

153

Simon E. Fisher, Faraneh Vargha-Khadem, Kate E. Watkins, Anthony P. Monaco, and Marcus E. Pembrey, "Localisation of a gene implicated in a severe speech and language disorder", Nature Genetics 18 (1998): 168-70. C. S. L. Lai, et al., "A novel forkhead-domain gene is mutated in a severe speech and language disorder", Nature 413 (2001): 519-23.

154

Johannes Krause, Carles Lalueza-Fox, Ludovic Orlando, et al., "The Derived FOXP2 Variant of Modern Humans Was Shared with Neandertals", Current Biology 17 (2007): 1908-12.

155

Fernando L. Mendez et al. "The Divergence of Neandertal and Modern Human Y Chromosomes", American Journal of Human Genetics 98, no. 4 (2016): 728-34.

156

Guy Deutscher, The Unfolding of Language: An Evolutionary Tour of Mankind's Greatest Invention (New York: Henry Holt and Company, 2005),15.

157

Dean Falk, "Prelinguistic evolution in early hominins: Whence motherese?" Behavioral and Brain Sciences 27 (2004): 491–541; Dean Falk, Finding Our Tongues: Mothers, Infants and the Origins of Language (New York: Basic Books, 2009).

158

R. I. M. Dunbar, "Gossip in Evolutionary Perspective", Review of General Psychology 8, no. 2 (2004): 100-10; Robin Dunbar, Grooming, Gossip, and the Evolution of Language (Cambridge, MA: Harvard University Press, 1997).

159

N. Emler, "The Truth About Gossip," Social Psychology Section Newsletter 27 (1992): 23–37; R. I. M. Dunbar, N. D. C. Duncan, and A. Marriott, "Human Conversational Behavior", Human Nature 8, no. 3 (1997): 231-46.

160

Daniel Dor, The Instruction of Imagination (Oxford: Oxford University Press, 2015).

161

О роли поддержания огня и приготовления пищи см.: Richard Wrangha, Catching Fire: How Cooking Made Us Human (New York: Basic Books; 2009); о групповом воспитании молодняка см.: Sarah Hrdy, Mothers and Others: The Evolutionary Origins of Mutual Understanding (Cambridge, MA: Belknap Press, 2009); об обучении и сотрудничестве см.: Kim Sterelny, The Evolved Apprentice: How Evolution Made Humans Unique (Cambridge, MA: MIT Press, 2012).

162

R. Berwick and N. Chomsky, Why Only Us? (Cambridge, MA: MIT Press, 2015), chapter 2.

163

David Damrosch, The Buried Book: The Loss and Rediscovery of the Great Epic of Gilgamesh (New York: Henry Holt and Company, 2007).

164

Эпос о Гильгамеше («О все видавшем») / Пер. с аккадского И. М. Дьяконова. — СПб.: Наука, 2006. C. 54–55.

165

Введение в теорию и принципы эволюционной психологии см.: John Tooby and Leda Cosmides, "The Psychological Foundations of Culture," in The Adapted Mind: Evolutionary Psychology and the Generation of Culture, ed. Jerome H. Barkow, Leda Cosmides, and John Tooby (Oxford: Oxford University Press, 1992), 19-136; David Buss, Evolutionary Psychology: The New Science of the Mind (Boston: Allyn & Bacon, 2012).

166

S. J. Gould and R. C. Lewontin, "The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme," Proceedings of the Royal Society B 205, no. 1161 (21 September 1979): 581-98.

167

Пинкер С. Как работает мозг. — М.: Кучково поле, 2017. С. 593.

168

Patrick Colm Hogan, The Mind and Its Stories (Cambridge: Cambridge University Press, 2003); Lisa Zunshine, Why We Read Fiction: Theory of Mind and the Novel (Columbus: Ohio State University Press, 2006).

169

Готтшалл Д. Как сторителлинг сделал нас людьми. — М.: КоЛибри, 2020.

170

Keith Oatley, "Why fiction may be twice as true as fact", Review of General Psychology 3 (1999): 101-17.

171

Захватывающее описание работы Жуве см.: Barbara E. Jones, "The mysteries of sleep and waking unveiled by Michel Jouvet", Sleep Medicine 49 (2018): 14–19; Isabelle Arnulf, Colette Buda, and Jean-Pierre Sastre, "Michel Jouvet: An explorer of dreams and a great storyteller", Sleep Medicine 49 (2018): 4–9.

172

Kenway Louie and Matthew A. Wilson, "Temporally Structured Replay of Awake Hippocampal Ensemble Activity During Rapid Eye Movement Sleep", Neuron 29 (2001): 145-56.

173

Диковинные сюжеты, которые мы часто связываем со сновидениями (нарушение физических законов, логической последовательности и внутренней логики), означают, возможно, что просмотр сновидений имеет к встречам в реальном мире лишь косвенное отношение. Однако преобладание подобных нелепых сновидений, возможно, далеко не такое абсолютное, как кажется по нашим личным впечатлениям. Напротив, значительная доля наших сновидений может быть вполне реалистичной по содержанию. Antti Revonsuo, Jarno Tuominen, and Katja Valli, "The Avatars in the Machine — Dreaming as a Simulation of Social Reality", Open MIND (2015): 1-28; Serena Scarpelli, Chiara Bartolacci, Aurora D'Atri, et al., "The Functional Role of Dreaming in Emotional Processes", Frontiers in Psychology 10 (March 2019): 459.

174

Alfred North Whitehead, Science and the Modern World (New York: Free Press, 1953), 10.

175

Joyce Carol Oates, "Literature as Pleasure, Pleasure as Literature," Narrative. https://www.narrativemagazine.com/issues/stories-week-2015-2016/story-week/literature-pleasure-pleasure-literature-joyce-carol-oates Jerome Bruner, "The Narrative Construction of Reality", Critical Inquiry 18, no. 1 (Autumn 1991): 1-21.

176

Jerome Bruner, Making Stories: Law, Literature, Life (New York: Farrar, Straus and Giroux, 2002), 16.

177

Brian Boyd, "The evolution of stories: from mimesis to language, from fact to fiction," WIREs Cognitive Science 9 (2018): 7–8, e1444.

178

John Tooby and Leda Cosmides, "Does Beauty Build Adapted Minds? Toward an Evolutionary Theory of Aesthetics, Fiction and the Arts", SubStance 30, no. 1/2, issue 94/95 (2001): 6-27.

179

Ernest Becker, The Denial of Death (New York: Free Press, 1973), 97. 180

180

Кэмпбелл Д. Герой с тысячью лицами: Миф. Архетип. Бессознательное. — СПб.: София, 1997..

181

Michael Witzel, The Origins of the World's Mythologies (New York: Oxford University Press, 2012).

182

Армстронг К. Краткая история мифа. — М.: Открытый мир, 2005. С. 11.

183

Юрсенар М. Восточные новеллы. — М.: Энигма, 1996.

184

Scott Leonard and Michael McClure, Myth and Knowing (New York: McGraw-Hill Higher Education, 2004), 283–301.

185

Michael Witzel, The Origins of the World's Mythologies (New York: Oxford University Press, 2012), 79.

186

Dan Sperber, Rethinking Symbolism (Cambridge: Cambridge University Press, 1975); Dan Sperber, Explaining Culture: A Naturalistic Approach (Oxford: Blackwell Publishers Ltd., 1996).

187

Pascal Boyer, "Functional Origins of Religious Concepts: Ontological and Strategic Selection in Evolved Minds", Journal of the Royal Anthropological Institute 6, no. 2 (June 2000): 195–214. См. также: M. Zuckerman, "Sensation seeking: A comparative approach to a human trait", Behavioral and Brain Sciences 7 (1984): 413-71.

188

Бертран Рассел подчеркивает роль языка в развитии мысли, отмечая, что «язык не только служит для выражения мыслей, но и делает возможными мысли, которые без него не могли бы существовать» (Рассел Б. Человеческое познание. — М., 2000. С. 67). Он описывает, как некоторые «хорошо отработанные мысли» требуют слов, и в качестве примера отмечает, что, очевидно, нельзя «иметь вообще никакой мысли, точно соответствующей тому, что утверждается в предложении: "отношение длины окружности круга к его диаметру равно приблизительно 3,14159"». Конструкты менее точные, но лежащие вне рамок повседневного опыта, такие как говорящие деревья, плачущие облака или счастливые камешки, поддаются бессловесному воплощению в человеческом сознании, но комбинаторная и иерархическая природа языка особенно хорошо подходит для их создания. Дэниел Деннет подчеркивает роль языка в человеческой способности придумывать сочетания свойств, которые по отдельности существуют в реальности, но вместе переносят нас в царство фантастики (Daniel Dennett, Breaking the Spell: Religion as a Natural Phenomenon [New York: Penguin Publishing Group, 2006], 121). Как мы будем обсуждать в главе 8, некоторые виды искусства способны усиливать поток идей в другом направлении: от мыслей, выраженных словами, к свободным от языка эмпирическим чувствам.

189

Justin L. Barrett, Why Would Anyone Believe in God? (Lanham, MD: AltaMira, 2004); Stewart Guthrie, Faces in the Clouds: A New Theory of Religion (New York: Oxford University Press, 1993).

190

Раскопки в Кафзехе начал в 1934 г. французский археолог Рене Невиль, а продолжила команда под руководством антрополога Бернара Вандермерша. По словам Вандермерша и его коллег, организация погребения Кафзех 11 «указывала на погребальное приношение, а не на случайное попадание туда этого предмета. Все эти наблюдения активно поддерживают интерпретацию намеренного церемониального погребения». См.: Hélène Coqueugniot et al., "Earliest cranio-encephalic trauma from the Levantine Middle Palaeolithic: 3D reappraisal of the Qafzeh 11 skull, consequences of pediatric brain damage on individual life condition and social care", PloS One 9 (23 July 2014): 7 e102822.

191

Erik Trinkaus, Alexandra Buzhilova, Maria Mednikova, and Maria Dobrovolskaya, The People of Sunghir: Burials, Bodies and Behavior in the Earlier Upper Paleolithic (New York: Oxford University Press, 2014). [На русском языке можно посмотреть, например: Никитюк Б. А., Харитонов В. М. Посткраниальный скелет детей с верхнепалеолитической стоянки Сунгирь // Сунгирь. Антропологическое исследование. — М.: Наука, 1984. С. 182–203. В 2017 году был проведен генетический анализ остатков, и выяснилось, что оба погребенных ребенка — мальчики: Sikora M, et al. Science, v. 358, 659-62. На русском языке: Руссо М. Сунгирь: мальчик, и еще мальчик // Полит. ру, 03.11.2017, URL: https://polit.ru/article/2017/11/03/ps sunghir. — Прим. науч. ред.]

192

Edward Burnett Tylor, Primitive Culture, vol. 2 (London: John Murray 1873; Dover Reprint Edition, 2016), 24.

193

Mathias Georg Guenther, Tricksters and Trancers: Bushman Religion and Society (Bloomington, IN: Indiana University Press, 1999), 180-98.

194

Peter J. Ucko and Andrée Rosenfeld, Paleolithic Cave Art (New York: McGraw-Hill, 1967), 117-23, 165-74.

195

David Lewis-Williams, The Mind in the Cave: Consciousness and the Origins of Art (New York: Thames & Hudson, 2002), 11. Хотя многие произведения созданы на более доступных поверхностях, существование значительного количества рисунков, выполнить которые было чрезвычайно трудно, придает этой точке зрения весомость.

196

Salomon Reinach, Cults, Myths and Religions, trans. Elizabeth Frost (London: David Nutt, 1912), 124-38.

197

Эта гипотеза получила широкое хождение, но обнаруженное впоследствии несоответствие между животными, кости которых обнаруживались в окрестностях пещер, и животными, изображенными на стенах этих пещер, вызывает сомнение. Если вы пытаетесь приманить к себе немножко лишней удачи в охоте на бизона, то и рисовать вы, вероятно, будете бизона. Ну или нам так кажется. Но данные не подтверждают этих ожиданий. См.: Jean Clottes, What Is Paleolithic Art? Cave Paintings and the Dawn of Human Creativity (Chicago: University of Chicago Press, 2016).

198

Бенджамин Смит, при личном общении, 13 марта 2019 г.

199

Буайе П. Объясняя религию: Природа религиозного мышления. — М.: Альпина нон-фикшн, 2018.

200

Подробное обсуждение этого вопроса см., к примеру: The Adapted Mind: Evolutionary Psychology and the Generation of Culture, Jerome H. Barkow, Leda Cosmides, and John Tooby, eds. (Oxford: Oxford University Press, 1992); David Buss, Evolutionary Psychology: The New Science of Mind (Boston: Allyn & Bacon, 2012).

201

Среди других доступных работ по когнитивному подходу к религии см., к примеру: Justin L. Barrett, Why Would Anyone Believe in God? (Lanham, MD: AltaMira Press, 2004); Scott Atran, In Gods We Trust: The Evolutionary Landscape of Religion (Oxford: Oxford University Press, 2002); Todd Tremlin, Minds and Gods: The Cognitive Foundations of Religion (Oxford: Oxford University Press, 2006).

202

Pascal Boyer, Religion Explained: The Evolutionary Origins of Religious Thought (New York: Basic Books, 2007), 46–47 [Буайе П. Объясняя религию. — М., 2018. — Прим. науч. ред.]; Daniel Dennett, Breaking the Spell: Religion as a Natural Phenomenon (New York: Penguin Books, 2006), 122-23; Richard Dawkins, The God Delusion (New York: Houghton Mifflin Harcourt, 2006), 230-33 [Докинз Р. Бог как иллюзия. — М.: Колибри, 2008. — Прим. науч. ред.].

203

Теория родственного отбора (или совокупной приспособленности), впервые описанного Дарвином, развита в: Фишер Р. Генетическая теория естественного отбора. — М.: Ижевск, 2011; J. B. S. Haldane, The Causes of Evolution (London: Longmans, Green & Co., 1932); и W. D. Hamilton, "The Genetical Evolution of Social Behaviour", Journal of Theoretical Biology 7, no. 1 (1964): 1-16. Ближе к нашему времени полезность совокупной приспособленности в понимании эволюционного процесса была поставлена под сомнение: M. A. Nowak, C. E. Tarnita, and E. O. Wilson, "The evolution of eusociality", Nature 466 (2010): 1057-62. Ответную критическую статью подписали 136 исследователей: P. Abbot, J. Abe, J. Alcock, et al., "Inclusive fitness theory and eusociality", Nature 471 (2010): E1-E4.

204

David Sloan Wilson, Does Altruism Exist? Culture, Genes and the Welfare of Others (New Haven: Yale University Press, 2015); David Sloan Wilson, Darwin's Cathedral: Evolution, Religion and the Nature of Society (Chicago: University of Chicago Press, 2002).

205

Один из примеров см.: Steven Pinker in "The Believing Brain," World Science Festival public program, New York City, Gerald Lynch Theatre, 2 June 2018, https://www.worldsciencefestival.com/videos/believing-brain-evolution-neuroscience-spiritual-instinct (отметка 46:50–49:16).

206

Дарвин Ч. Происхождение человека и половой отбор // Сочинения. Т. 5. — М.: АН СССР, 1953. С. 242.

Комментарий Дарвина отсылает нас к давнему вялотекущему спору в эволюционной теории, связанному с процессом группового отбора. Стандартная эволюционная теория основана на естественном отборе, который действует на уровне отдельных организмов: организмы, лучше способные выжить и оставить потомство, будут более успешны в передаче своего генетического материала следующим поколениям. Групповой отбор действует аналогично, но на целые группы особей: группы, лучше приспособленные для выживания (как группы) и воспроизведения (в смысле приобретения большего количества членов и образования новых групп), смогут успешнее передать свои доминантные черты последующим группам. (Замечание Дарвина сосредоточено на том, что сотрудничающие особи вносят свой вклад в успех группы, который проявляется в росте числа ее членов в противовес числу членов в других аналогичных группах, но полагается он все же на фундаментальную взаимосвязь вариантов поведения, благоприятных для индивида, и вариантов, благоприятных для группы.) Никто не спорит с тем, что групповой отбор в принципе возможен. Споры идут о том, происходит ли он на самом деле. Вопрос упирается в шкалу времени. По общему мнению, типичный промежуток времени, за который индивидуум либо оставит потомство, либо умрет, много меньше, чем соответствующие промежутки времени, за которые группа либо разделится, либо исчезнет. А если это так, говорят критики группового отбора, то групповой отбор — процесс слишком медленный, чтобы играть заметную роль. В ответ Дэвид Слоан Уилсон, давний пропагандист группового отбора (в еще более обобщенной форме, известной как многоуровневый отбор), заявил, что спор этот сводится в значительной степени к разным, но в конечном итоге эквивалентным методам подсчета (разным способам деления всего населения) и потому менее противоречив, чем продолжающиеся споры заставляют его выглядеть (см.: David Sloan Wilson, Does Altruism Exist? Culture, Genes and the Welfare of Others [New Haven: Yale University Press, 2015], 31–46).

207

Важность эмоциональной основы религиозного рвения исследуется в: R. Sosis, "Religion and intra-group cooperation: Preliminary results of a comparative analysis of utopian communities", Cross-Cultural Research 34 (2000): 70–87; R. Sosis and C. Alcorta, "Signaling, solidarity, and the sacred: The evolution of religious behavior," Evolutionary Anthropology 12 (2003): 264-74.

208

Robert Axelrod and William D. Hamilton, "The Evolution of Cooperation," Science 211 (March 1981): 1390-96; Robert Axelrod, The Evolution of Cooperation, rev. ed. (New York: Perseus Books Group, 2006).

209

Jesse Bering, The Belief Instinct (New York: W. W. Norton, 2011).

210

Sheldon Solomon, Jeff Greenberg, and Tom Pyszczynski, The Worm at the Core: On the Role of Death in Life (New York: Random House Publishing Group, 2015), 122.

211

Abram Rosenblatt, Jeff Greenberg, Sheldon Solomon, et al., "Evidence for Terror Management Theory I: The Effects of Mortality Salience on Reactions to Those Who Violate or Uphold Cultural Values", Journal of Personality and Social Psychology 57 (1989): 681-90. For a review, see Sheldon Solomon, Jeff Greenberg, and Tom Pyszczynski, "Tales from the Crypt: On the Role of Death in Life", Zygon 33, no. 1 (1998): 9-43.

212

Tom Pyszczynski, Sheldon Solomon, and Jeff Greenberg, "Thirty Years of Terror Management Theory", Advances in Experimental Social Psychology 52 (2015): 1-70.

213

Буайе П. Объясняя религию. — М., 2016.

214

Джеймс У. Многообразие религиозного опыта.

215

Stephen Jay Gould, The Richness of Life: The Essential Stephen Jay Gould (New York: W. W. Norton, 2006), 232-33.

216

Stephen J. Gould, in Conversations About the End of Time (New York: Fromm International, 1999). Для изучения влияния осознания смертности на веру в сверхъестественные сущности, см., к примеру: A. Norenzayan and I. G. Hansen, "Belief in supernatural agents in the face of death", Personality and Social Psychology Bulletin 32 (2006): 174-87.

217

Ясперс К. Смысл и назначение истории. — М., 1991. С. 33.

218

Ригведа. В 3 т. / Пер. Т. Я. Елизаренковой. Т. 3. Мандалы IX–X. — М.: Наука, 1999. С. 286.

219

Его святейшество далай-лама, Хьюстон, штат Техас, 21 сентября 2005 г. Мне не удалось найти запись того разговора, но это, по крайней мере, очень точный пересказ его ответа.

220

Как и в случае с историческими корнями всех основных религий, ученые спорят, когда конкретно были написаны различные тексты, когда они достигли своей канонической формы и так далее. Приведенные мной даты соответствуют некоторым ученым мнениям, но, поскольку универсального согласия здесь нет, их следует рассматривать как очень и очень приблизительные.

221

David Buss, Evolutionary Psychology: The New Science of Mind (Boston: Allyn & Bacon, 2012), 90–95, 205–206, 405–409.

222

Глубокое, доступное и живое обсуждение человеческих верований и различных факторов, которые на них влияют, см.: Michael Shermer, The Believing Brain: From Ghosts and Gods to Politics and Conspiracies (New York: St. Martin's Griffin, 2011). Хотя влияние, которое эмоции, вероятно, оказали на веру, может показаться очевидным, до недавнего времени внимание ученых, как правило, подчеркивало влияние веры на эмоции, что подчеркивается в: N. Frijda, A. S. R. Manstead, and S. Bem, "The influence of emotions on belief", in Emotions and Beliefs: How Feelings Influence Thoughts (Studies in Emotion and Social Interaction), ed. N. Frijda, A. Manstead, and S. Bem (Cambridge: Cambridge University Press, 2000), 1–9. Изучение влияния эмоций на формирование новых верований, а также на готовность изменить верования описано в: N. Frijda and B. Mesquita, "Beliefs through emotions", in Emotions and Beliefs: How Feelings Influence Thoughts (Studies in Emotion and Social Interaction), ed. N. Frijda, A. Manstead, and S. Bem (Cambridge: Cambridge University Press, 2000), 45–77.

223

Грин Б. Скрытая реальность. — М.: URSS, Либроком, 2013.

224

Буайе П. Объясняя религию. М., 2016. [Последний фрагмент приведен здесь в переводе более близком к оригиналу. — Прим. науч. ред.]

225

Армстронг К. Краткая история мифа. — М.: Открытый мир, 2005.

226

Там же.

227

Guy Deutscher, The Unfolding of Language: An Evolutionary Tour of Mankind's Greatest Invention (New York: Henry Holt and Company, 2005).

228

Джеймс У. Многообразие религиозного опыта. — М., 1993. С. 388.

229

Там же.

230

Howard Chandler Robbins Landon, Beethoven: A Documentary Study (New York: Macmillan Publishing Co., Inc., 1970), 181.

231

Ницше Ф. Сумерки идолов, или Как философствуют молотом // Ницше Ф. Сочинения в 2 т. Т. 2. — М.: Мысль, 1990. С. 561.

232

Шоу Б. Назад к Мафусаилу // Полное собрание пьес в 6 т. Т. 5.— М.: Искусство, 1980. С. 296.

233

David Sheff, "Keith Haring, An Intimate Conversation", Rolling Stone 589 (August 1989): 47.

234

Josephine C. A. Joordens et al., "Homo erectus at Trinil on Java used shells for tool production and engraving", Nature 518 (12 February 2015): 228-31.

235

Точнее говоря, важно, чтобы гены, принадлежащие особи, были переданы следующему поколению, а этой цели можно добиться, если произвести на свет потомство или обеспечить, чтобы потомство произвели на свет другие особи, имеющие с данной значительную часть общих генов.

236

Брачные ритуалы белобородых манакинов подробно описаны в: Richard Prum, The Evolution of Beauty: How Darwin's Forgotten Theory on Mate Choice Shapes the Animal World and Us (New York: Doubleday, 2017), 1544-45, Kindle. Танцы и выбор партнера у светлячков описаны в: S. M. Lewis and C. K. Cratsley, "Flash signal evolution, mate choice, and predation in fireflies," Annual Review of Entomology 53 (2008): 293–321. Конструкции шалашников описаны и проиллюстрированы в: Peter Rowland, Bowerbirds (Collingwood, Australia: CSIRO Publishing, 2008), 40–47.

237

Сопротивление идее полового отбора объяснялось отчасти также тем, что за разборчивыми самочками признавалось право выбора и связанная с ним селективная власть; викторианским биологам, почти исключительно мужчинам, это было отвратительно. См., к примеру: H. Cronin, The Ant and the Peacock: Altruism and Sexual Selection from Darwin to Today (Cambridge: Cambridge University Press, 1991). Обратите также внимание, что есть виды, в которых выбор — удел самцов, и виды, в которых в этом процессе задействованы обе стороны.

238

Дарвин Ч. Происхождение человека и половой отбор. — М.: Терра, 2010.

239

Уоллес предложил для телесных украшений самцов альтернативное объяснение: есть самцы, обладающие чрезмерной «жизненной силой», и сила эта, не имея иного доступного выхода, воплощается в яркие цвета, длинные хвосты, продолжительные песни и т. п. Он утверждал также, что привлекательные телесные украшения обязательно коррелируют со здоровьем и силой и служат, таким образом, их зримым индикатором, делая половой отбор всего лишь одной из разновидностей естественного отбора. См.: Alfred Russel Wallace, Natural Selection and Tropical Nature (London: Macmillan and Co., 1891). Орнитолог Ричард Прам утверждает, что исследователи часто неоправданно отбрасывают вариант с врожденным эстетическим чувством в пользу адаптивных объяснений; свою спорную позицию он изложил в: Richard Prum, The Evolution of Beauty: How Darwin's Forgotten Theory on Mate Choice Shapes the Animal World and Us (New York: Doubleday, 2017).

240

Асимметрию «самец — самка» на арене репродуктивной стратегии исследовал и описал Роберт Трайверс в: Robert Trivers, "Parental Investment and Sexual Selection", in Sexual Selection and the Descent of Man: The Darwinian Pivot, ed. Bernard G. Campbell (Chicago: Aldine Publishing Company, 1972), 136-79.

241

Geoffrey Miller, The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature (New York: Anchor, 2000); Denis Dutton, The Art Instinct (New York: Bloomsbury Press, 2010). Эта точка зрения имеет непосредственное отношение к предложенной ранее Амоцем Захави гипотезе, принципу гандикапа, согласно которому некоторые животные рекламируют свое физическое состояние при помощи демонстрации своеобразной «показной расточительности», которая может принимать вид экстравагантных телесных черт или вариантов поведения. Петух, который может себе позволить таскать всюду красивый, но неудобный хвост, заверяет потенциальных партнерш в своей силе и здоровье, поскольку его более слабые собратья не выжили бы с такой чрезмерной, мешающей выживанию штукой. Идея, таким образом, состоит в том, что древние художники, возможно, превращали адаптивную бесполезность собственного искусства в похожую публичную демонстрацию силы и физического состояния, повышая таким образом свои репродуктивные возможности и, соответственно, передавая по наследству склонность к искусству как средству привлечения партнерш. См.: Amotz Zahavi, "Mate selection — A selection for a handicap", Journal of Theoretical Biology 53, no. 1 (1975): 205-14.

242

Brian Boyd, "Evolutionary Theories of Art", in The Literary Animal: Evolution and the Nature of Narrative, ed. Jonathan Gottschall and David Sloan Wilson (Evanston, IL: Northwestern University Press, 2005), 147.

Упомянутую в этом разделе критику полового отбора как объяснения художественной деятельности человека можно найти во многих работах. Вот короткий пример. Если искусство объясняется половым отбором, нам, вероятно, следовало бы ожидать, что оно будет чисто мужским предприятием, тонко настроенными на сексуальный успех, то есть действием, которым наиболее активно будут заниматься мужчины в самом расцвете репродуктивных сил и которое будет направлено исключительно на потенциальных партнеров-женщин (Brian Boyd, On the Origin of Stories [Cambridge: Belknap Press, 2010], 76; Ellen Dissanayake, Art and Intimacy [Seattle: University of Washington Press, 2000], 136). Интеллект и креативность не всегда могут служить надежными индикаторами физического состояния — сочетание физической слабости и творческих способностей встречается не так уж редко (James R. Roney, "Likeable but Unlikely, a Review of the Mating Mind by Geoffrey Miller", Psycoloquy 13, no. 10 (2002), article 5).

Имеются ли свидетельства того, что художественные изыски являются для мужчин лучшим средством рассказать о своем здоровье и физическом состоянии, нежели хвастовство социальными связями, демонстрация богатства, победа в спортивных состязаниях и т. п.? (Stephen Davies, The Artful Species: Aesthetics, Art, and Evolution [Oxford: Oxford University Press, 2012], 125.)

243

Пинкер С. Как работает мозг. — М., 2007. С. 575.

244

Ellen Dissanayake, Art and Intimacy: How the Arts Began (Seattle: University of Washington Press, 2000), 94.

245

Noël Carroll, "The Arts, Emotion, and Evolution", in Aesthetics and the Sciences of Mind, ed. Greg Currie, Matthew Kieran, Aaron Meskin, and Jon Robson (Oxford: Oxford University Press, 2014).

246

Грин Б. Элегантная Вселенная. — М.: URSS, 2008.

247

Glenn Gould in The Glenn Gould Reader, ed. Tim Page (New York: Vintage Books, 1984), 240.

248

Brian Boyd, On the Origin of Stories (Cambridge, MA: Belknap Press, 2010), 125.

249

Jane Hirshfield, Nine Gates: Entering the Mind of Poetry (New York: Harper Perennial, 1998), 18.

250

Saul Bellow, Nobel lecture, 12 December 1976, from Nobel Lectures, Literature 1968–1980, ed. Sture Allén (Singapore: World Scientific Publishing Co., 1993). [Частично цит. по: Орелев В. Опыт поэтики театра. — Орел; Днепропетровск, 1997. — Прим. науч. ред.]

251

Joseph Conrad, The Nigger of the "Narcissus" (Mineola, NY: Dover Publications, Inc., 1999), vi.

252

Yip Harburg, "Yip at the 92nd Street YM-YWHA, December 13, 1970", transcript 1-10-3, p. 3, tapes 7-2-10 and 7-2-20.

253

Yip Harburg, "E. Y. Harburg, Lecture at UCLA on Lyric Writing, February 3, 1977", transcript, pp. 5–7, tape 7-3-10.

254

Пруст М. В поисках утраченного времени. Книга V. Пленница (пер. А. Франковского); Книга VII. Обретенное время (пер. А. Година).

255

Пруст М. В поисках утраченного времени. Книга V. Пленница (пер. А. Франковского).

256

Шоу Б. Назад к Мафусаилу // Полное собрание пьес в 6 т. Т. 5.— М.: Искусство. 1980. С. 297.

257

Ellen Greene, "Sappho 58: Philosophical Reflections on Death and Aging", in The New Sappho on Old Age: Textual and Philosophical Issues, ed. Ellen Greene and Marilyn B. Skinner, Hellenic Studies Series 38 (Washington, DC: Center for Hellenic Studies, 2009); Ellen Greene, ed., Reading Sappho: Contemporary Approaches (Berkeley: University of California Press, 1996).

258

Шекспир У. Сонет LXXXI (пер. А. Финкеля).

259

Joseph Wood Krutch, "Art, Magic, and Eternity", Virginia Quarterly Review 8, no. 4, (Autumn 1932); https://www.vqronline.org/essay/art-magic-and-eternity.

260

Что касается альтернативной точки зрения (как в сноске 5 к главе 1), то некоторые авторы предполагают, что тревога, связанная с неизбежностью смерти, и сопутствующее ей отрицание смерти, в том виде, в каком это описывал Эрнест Беккер, представляют собой современное течение, развившееся в основном под влиянием роста продолжительности жизни и упадка религии. См., к примеру: Philippe Aries, The Hour of Our Death, trans. Helen Weaver (New York: Alfred A. Knopf, 1981).

261

Йейтс У. Б. Плавание в Византию / Пер. Г. Кружкова. — СПб.: Азбука-классика, 2007.

262

Мелвилл Г. Моби Дик, или Белый кит. — М.: АСТ, 2016.

263

Edgar Allan Poe as quoted in J. Gerald Kennedy, Poe, Death, and the Life of Writing (New Haven: Yale University Press, 1987), 48.

264

Теннесси У. Кошка на раскаленной крыше. — АСТ, Астрель, Neoclassic, 2010.

265

Достоевский Ф. Преступление и наказание. — М.: АСТ, 2015.

266

Sylvia Plath, The Collected Poems, ed. Ted Hughes (New York: Harper Perennial, 1992), 255.

267

Дуглас А. Жизнь, Вселенная и все остальное. — М.: АСТ, Ермак, 2003.

268

Pablo Casals, from Bach Festival: Prades 1950, as quoted in Paul Elie, Reinventing Bach (New York: Farrar, Straus and Giroux, 2012), 447.

269

Joseph Conrad, The Nigger of the "Narcissus" (Mineola, NY: Dover Publications, Inc., 1999), vi.

270

Helen Keller, Letter to New York Symphony Orchestra, 2 February 1924, digital archives of American Foundation for the Blind, filename HK01- 07 B114 F08 015 002.tif.

271

Некоторые видные мыслители высказывают предположение, что человеческая эволюция подошла к концу. Так, Стивен Джей Гулд отмечал, что с точки зрения биологии сегодняшний человек, в сущности, ничем не отличается от людей, живших еще 50 000 лет назад (Stephen Jay Gould, "The spice of life", Leader to Leader 15 [2000]: 14–19). Другие исследователи, изучающие человеческий геном, утверждают, напротив, что темпы человеческой эволюции ускоряются (см., к примеру: John Hawks, Eric T. Wang, Gregory M. Cochran, et al., "Recent acceleration of human adaptive evolution", Proceedings of the National Academy of Sciences 104, no. 52 [December 2007]: 20753-58; Wenqing Fu, Timothy D. O'Connor, Goo Jun, et al., "Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants", Nature 493 [10 January 2013]: 216-20).

272

При изучении различных популяций получены данные об относительно недавней генетической эволюции. Среди примеров можно назвать рост мужчин-голландцев, у который исключительное увеличение средних показателей отражает, возможно, действие полового и естественного отбора (Gert Stulp, Louise Barrett, Felix C. Tropf, and Melinda Mill, "Does natural selection favour taller stature among the tallest people on earth?" Proceedings of the Royal Society B 282, no. 1806 [7 May 2015]: 20150211) and adaptations to high-altitude environments (Abigail Bigham et al., "Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data", PLoS Genetics 6, no. 9 [9 September 2010]: e1001116). Choongwon Jeong and Anna Di Rienzo, "Adaptations to local environments in modern human populations", Current Opinion in Genetics & Development 29 (2014), 1–8; Gert Stulp, Louise Barrett, Felix C. Tropf, and Melinda Mill, "Does natural selection favour taller stature among the tallest people on earth?" Proceedings of the Royal Society B 282, no. 1806 (7 May 2015): 20150211 (см. также примечание 1 выше).

273

Осторожную попытку рассмотреть подобное предположение предпринял Стивен Карлип в: Steven Carlip, "Transient Observers and Variable Constants, or Repelling the Invasion of the Boltzmann's Brains", Journal of Cosmology and Astroparticle Physics 06 (2007): 001.

274

Обратите внимание: единственное возможное изменение, которое мы будем рассматривать, это изменение величины темной энергии. Как говорится в этой главе, только в конце 1990-х гг. астрономические наблюдения убедили физическое сообщество, что отказ Эйнштейна от космологической постоянной в 1931 г. («Прочь космологический член!») был преждевременным. Кроме того, преждевременным было отнесение космологической постоянной к разряду «постоянных».

275

Вполне возможно, что величина эйнштейновского космологического члена изменяется со временем, и эта возможность, как мы увидим, повлечет за собой глубокие следствия для будущего.

276

Другой взгляд на будущее разума вы можете найти в: Дойч Д. Начало бесконечности. — М.: Альпина нон-фикшн, 2020.

277

Физическая эсхатология, физика далекого будущего, привлекает обычно меньше внимания, чем физика далекого прошлого. Тем не менее на эту тему было немало исследований. Обширный список ссылок содержится в: Milan M. Cirkovic, "Resource Letter: PEs-1, Physical Eschatology", American Journal of Physics 71 (2003): 122. В последующей дискуссии большое значение имеют знаковая статья Фримена Дайсона: Freeman Dyson, "Time without end: Physics and biology in an open universe", Reviews of Modern Physics 51 (1979): 447-60, и статья Фреда Адамса и Грегори Лафлина: Fred C. Adams and Gregory Laughlin, "A dying universe: The long-term fate and evolution of astrophysical objects", Reviews of Modern Physics 69 (1997): 337-72, в которой тема развивается дальше и куда вошли новые результаты по планетной, звездной и галактической динамике, о которых рассказывается также в их прекрасной популярной книге: The Five Ages of the Universe: Inside the Physics of Eternity (New York: Free Press, 1999). Начало современному этапу развития темы положили статьи: M. J. Rees, "The collapse of the universe: An eschatological study", Observatory 89 (1969): 193-98, и Jamal N. Islam, "Possible Ultimate Fate of the Universe", Quarterly Journal of the Royal Astronomical Society 18 (March 1977): 3–8. I.-J. Sackmann, A. I. Boothroyd, and K. E. Kraemer, "Our Sun. III. Present and Future", Astrophysical Journal 418 (1993): 457; Klaus-Peter Schroder and Robert C. Smith, "Distant future of the Sun and Earth revisited", Monthly Notices of the Royal Astronomical Society 386, no. 1 (2008): 155-63.

278

Знающий читатель отметит, что принцип запрета Паули должен был уже сыграть определенную роль в эволюции Солнца. Перед запуском гелиевого синтеза в ядре Солнца плотность его должна была быть достаточно велика, чтобы давление, обусловленное вырождением электронов в соответствии с принципом Паули, стало значимым. В самом деле упомянутая мною «зрелищная, но короткая вспышка», отмечающая переход к гелиевому синтезу, возникает из-за особых свойств газа из вырожденных электронов, населяющих ядро (этот газ не расширяется и не остывает в ответ на тепло, вырабатываемое при запуске гелиевого синтеза, что приводит к колоссальному разгону ядерной реакции, не слишком сильно отличающейся от действия гелиевой бомбы). Alan Lindsay Mackay, The Harvest of a Quiet Eye: A Selection of Scientific Quotations (Bristol, UK: Institute of Physics, 1977): 117.

279

Первоначальное признание ключевой роли принципа запрета Паули в строении белых карликов было сделано Р. Фаулером: R. H. Fowler, "On Dense Matter", Monthly Notices of the Royal Astronomical Society 87, no. 2 (1926): 114-22. Важность релятивистских эффектов признал также Субраманьян Чандрасекар в: Subrahmanyan Chandrasekhar, "The Maximum Mass of Ideal White Dwarfs", Astrophysical Journal 74 (1931): 81–82. Его результат, известный как предел Чандрасекара, показывает, что сжатие любой звезды с массой меньшей, чем примерно 1,4 массы Солнца, будет точно так же остановлено сопротивлением, возникающим из-за принципа запрета Паули. Впоследствии выяснилось, что в более массивных звездах сила сжатия сможет заставить электроны сливаться с протонами с образованием нейтронов. Этот процесс позволяет звездам сжиматься и дальше, но в какой-то момент нейтроны окажутся упакованы так плотно, что принцип запрета Паули снова вступит в игру — и, опять же, остановит дальнейшее сжатие. Результат — нейтронная звезда.

280

Хотя в среднем расстояния между галактиками растут, существуют галактики, которые располагаются достаточно близко друг к другу, чтобы их взаимное гравитационное притяжение заставляло их сближаться. Мы еще поговорим о том, что именно так обстоят дела с галактиками Млечный Путь и туманность Андромеды.

281

S. Perlmutter et al., "Measurements of Q and Л from 42 High-Redshift Supernovae", Astrophysical Journal 517, no. 2 (1999): 565; B. P. Schmidt et al., "The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae", Astrophysical Journal 507 (1998): 46.

282

Для полноты отметьте, что все объяснения ускоренного пространственного расширения, воспринимаемые всерьез, указывают на гравитацию. Но делают это они, в широком смысле, двумя разными способами. Либо поведение силы тяготения на космологических расстояниях отличается от того, что мы ожидаем увидеть на основании описаний Ньютона и Эйнштейна, либо источники тяготения отличаются от того, что мы ожидаем увидеть на основании традиционных представлений о веществе и энергии. Хотя оба подхода имеют право на существование, второй получил более полное развитие и нашел более широкое применение (при объяснении не только ускоренного расширения пространства, но и деталей в наблюдаемом реликтовом космическом излучении), так что именно этому подходу мы и будем следовать.

283

Плотность темной энергии составляет примерно 5 х 10–10 джоулей на кубический метр, или примерно 5 х 10–10 ватт-секунд на кубический метр. Для горения лампочки 100 Вт в течение одной секунды требуется в 2 х 1011 раз больше энергии, чем содержится темной энергии в одном кубическом сантиметре. Таким образом, этой энергии хватит на горение лампочки 100 Вт на протяжении около 5 х 10–12 секунды, или пяти триллионных долей секунды.

284

Если величина темной энергии не меняется во времени, то сама эта энергия идентична космологической постоянной Эйнштейна — отчаянному средству, которое Эйнштейн ввел в свои расчеты в 1917 г., когда понял, что уравнения общей теории относительности не в состоянии объяснить общепринятое мнение о том, что на больших масштабах Вселенная статична. Проблема, с которой столкнулся Эйнштейн, состояла в том, что статика требует равновесия, но гравитация, судя по всему, работает только в одном направлении. При отсутствии уравновешивающей силы статичная Вселенная казалась невозможной. К счастью, затем Эйнштейн понял, что с введением одного нового члена — той самой космологической постоянной — в уравнения общая теория относительности разрешает также отталкивающую гравитацию, которая способна уравновесить обычную притягивающую гравитацию и делает статичную Вселенную возможной. (Эйнштейн не учел, что такое равновесие неустойчиво — небольшое изменение размеров статичной Вселенной, ее увеличение или уменьшение, привело бы к нарушению баланса и, соответственно, ее расширению или сжатию.) Однако всего через десять с небольшим лет Эйнштейн узнал, что Вселенная расширяется. Осознав это, Эйнштейн совершил знаменитый шаг — исключил космологическую постоянную из своих уравнений. Но Эйнштейн выпустил джинна отталкивающей гравитации из бутылки общей теории относительности. Со временем отталкивающей гравитации суждено было сослужить космологии большую службу, обеспечив распирающее давление в момент Большого взрыва, а после этого предложив объяснение ускоренного расширения пространства. Как говорили многие, из всего этого видно, что даже неудачные идеи Эйнштейна хороши.

285

Robert R. Caldwell, Marc Kamionkowski, and Nevin N. Weinberg, "Phantom Energy and Cosmic Doomsday", Physical Review Letters 91 (2003): 071301.

286

Abraham Loeb, "Cosmology with hypervelocity stars," Journal of Cosmology and Astroparticle Physics 04 (2011): 023.

287

Энергия внутри Земли — тоже остаток тепла, произведенного, когда гравитационное притяжение смяло облако пыли и газа в нарождающуюся планету. Кроме того, тепло вырабатывается при вращении Земли, потому что при движении возникают напряжения в глубоких геологических слоях, которым для поддержания вращения с общей скоростью необходимо постоянное воздействие. [Это связано с приливным воздействием Луны и Солнца. — Прим. науч. ред.] Fred C. Adams and Gregory Laughlin, "A dying universe: The long-term fate and evolution of astrophysical objects", Reviews of Modern Physics 69 (1997): 337-72; Fred C. Adams and Greg Laughlin, The Five Ages of the Universe: Inside the Physics of Eternity (New York: Free Press, 1999), 5052.

288

Аналогичные соображения применимы к планетам и спутникам, которые всегда располагались слишком далеко от своей звезды, чтобы на их поверхности сложились условия, благоприятные для возникновения жизни. Внутренние процессы в таких телах, их астрогеология, способны вырабатывать энергию, достаточную для поддержания жизни глубоко под поверхностью. Первый кандидат в эту категорию — спутник Сатурна Энцелад. Он находится так далеко от Солнца, что его ледяная поверхность — неподходящий дом для жизни. Но разнонаправленные гравитационные силы, обусловленные притяжением Сатурна и других его спутников, слегка растягивают Энцелад в одном направлении и сжимают в другом, создают напряжения и деформации, которые разогревают его изнутри, плавят лед и, возможно, обеспечивают существование некоторого объема жидкой воды. Нельзя исключить, что когда-нибудь мы просверлим маленькое отверстие в ледяной корке Энцелада, спустим туда зонд — и окажемся лицом к лицу с аборигенным, хотя и водным, обитателем Энцелада.

289

Для демонстрации этого см. мою часть шоу The LateShow with Stephen Colbert, в котором роняют стопку мячиков; самый легкий из них при этом взлетает выше чем на десять метров вверх (наверняка это единственный рекорд из Книги рекордов Гиннесса, который когда-либо будет мне принадлежать). https://www.youtube.com/watch?v=75szwX09pg8

290

Дайсон дает простую, самую грубую оценку скорости, с которой планеты выбрасываются из планетных систем, и скорости, с которой звезды выбрасываются из галактик: Freeman Dyson, "Time without end: Physics and biology in an open universe", Reviews of Modern Physics 51 (1979): 450. Адамс и Лофлен приводят более полные объяснения и расчеты, а также оригинальные исследования некоторых из этих процессов (к примеру, какие последствия вызовет пролет небольших звезд через нашу Солнечную систему). F. C. Adams and G. Laughlin, "A dying universe: The long-term fate and evolution of astrophysical objects", Reviews of Modern Physics 69 (1997): 343-47; Fred C. Adams and Greg Laughlin, The Five Ages of the Universe: Inside the Physics of Eternity (New York: Free Press, 1999), 50–51.

291

Демонстрацию метафоры с резиновым листом, снятую с использованием эластичной ткани, и короткое обсуждение того, о чем пойдет речь в следующем абзаце в связи с гравитационными волнами и деградацией планетных орбит, см.: https://www.youtube.com/watch?v=uRijc-AN-F0

292

R. A. Hulse and J. H. Taylor, "Discovery of a pulsar in a binary system", Astrophysical Journal 195 (1975): L51.

293

Возможность того, что медленно деградирующая орбита, вероятно, указывает на потерю энергии через гравитационное излучение, первым рассмотрел Роберт Вагонер: R. V. Wagoner, "Test for the existence of gravitational radiation", Astrophysical Journal 196 (1975): L63.

294

J. H. Taylor, L. A. Fowler, and P. M. McCulloch, "Measurements of general relativistic effects in the binary pulsar PSR 1913+16", Nature 277 (1979): 437.

295

Freeman Dyson, "Time without end: Physics and biology in an open universe", Reviews of Modern Physics 51 (1979): 451; Fred C. Adams and Gregory Laughlin, "A dying universe: The long-term fate and evolution of astrophysical objects", Reviews of Modern Physics 69 (1997): 344-47.

296

Fred C. Adams and Gregory Laughlin, "A dying universe: The long-term fate and evolution of astrophysical objects", Reviews of Modern Physics 69 (1997): 347-49.

297

Изолированные нейтроны имеют короткое время жизни, равное примерно 15 минутам. Однако, поскольку нейтроны тяжелее протонов, в процессе их распада образуется протон (а также электрон и антинейтрино). Чтобы нейтрон в составе атома мог распасться, ядро атома должно иметь возможность вместить в себя получившийся протон, но это требование часто не может быть выполнено. Протоны, уже имеющиеся в ядре, заполняют собой все доступные квантовые ячейки, в каждой из которых, согласно Паули и его принципу запрета, не может находиться одновременно два одинаковых протона; в этом контексте стабильность нейтрона сильно повышается. Если протоны распадаются, они, будучи легче нейтронов, не образуют нейтронов, так что аналогичный стабилизирующий процесс не включается.

298

Howard Georgi and Sheldon Glashow, "Unity of All Elementary-Particle Forces", Physical Review Letters 32, no. 8 (1974): 438.

299

Период полураспада, равный 1030 годам, подразумевает, что в образце из 1030 протонов существует 50 %-ная вероятность того, что один из них распадется на протяжении первого же года.

300

1 галлон равен примерно 3,8 литра. — Прим. ред.

301

Говард Джорджи, в личном общении. Гарвардский университет, 28 декабря 1997 г.

302

Если протоны не распадаются так, как это предусматривают теории, такие как теория Великого объединения или теория струн, выходящие за рамки установленных законов физики элементарных частиц — Стандартной модели физики элементарных частиц, то ход будущих событий, который я описал, потребует некоторых модификаций. К примеру, мы обычно представляем себе твердые тела, такие как железо, как объекты, которые удерживают свою форму, в отличие от жидкостей, форма которых текуча. Но на достаточно больших интервалах времени даже железо может вести себя как жидкость; составляющие его атомы туннелируют через все барьеры, воздвигаемые в обычных условиях физическими и химическими процессами. Примерно за 1065 лет кусок железа, плавающий в космосе, переставит свои атомы, «сплавившись» в округлый ком — как сделает и любое другое из существующих веществ. Помимо изменения формы, на более длительных интервалах должна измениться и структура вещества: атомы легче железа постепенно сольются в более тяжелые, тогда как атомы тяжелее железа распадутся. Железо — самая стабильная из всех атомных конфигураций, поэтому именно железо будет конечным продуктом всех подобных ядерных процессов. Период времени, за который такие процессы должны завершиться, составляет примерно 101500 лет. На еще более длительных интервалах вся материя квантово туннелирует в черные дыры, которые в таком масштабе времени немедленно испарятся за счет хокинговского излучения. Обратите внимание, однако, что даже в Стандартной модели физики элементарных частиц — без всяких экзотических или гипотетических расширений — предполагается, что протоны будут распадаться, только гораздо медленнее, чем те 1038 лет, о которых мы говорили в этой главе. Существует, к примеру, экзотический квантовый процесс, полностью укладывающийся в рамки Стандартной модели (известный как инстантон, использующий так называемое сфалероновое решение уравнений электрослабого поля), который физики изучают теоретически и который должен привести в результате к распаду протона. Этот процесс связан с событием квантового туннелирования, так что на шкале времени он располагается очень далеко — оценки относят его примерно на 10150 лет в будущее, но куда ближе, чем 101500 лет, упоминавшиеся чуть раньше. Физики изучают и другие экзотические процессы, которые также должны вызывать распад протона в различные сроки, оцениваемые по большей части в пределах 10200 лет. Так что к той будущей эпохе, скорее всего, любое оставшееся сложное вещество уже распадется. См. в: Freeman Dyson, "Time without end: Physics and biology in an open universe", Reviews of Modem Physics 51 (1979): 451-52, оценки текучести твердого вещества и превращения вещества в железо. Ссылки на квантовое туннелирование, ведущее к распаду протона, см. в: G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle", Physical Review D 14 (1976): 3432, и F. R. Klinkhamer and N. S. Manton, "A saddle-point solution in the Weinberg-Salam theory", Physical Review D 30 (1984): 2212.

303

Freeman Dyson, "Time without end: Physics and biology in an open universe", Reviews of Modern Physics 51 (1979): 447-60.

304

Дайсон вычисляет необходимую скорость рассеяния энергии D для Мыслителя со «сложностью» Q (это скорость генерации энтропии на единицу субъективного времени Мыслителя, или, приблизительно, производство энтропии в расчете на одну мысль), действующего при температуре T, и получает D a QT2.

305

Сформулирую более точно соображения Дайсона на том языке, которым я пользуюсь. Если у нас имеется ансамбль Мыслителей, настроенных на функционирование при различных температурах, то скорость метаболических процессов каждого Мыслителя, какими бы они ни были, линейно возрастает с ростом температуры. В математической форме Дайсон предлагает так называемую гипотезу биологического масштабирования, которая гласит: если у вас имеется копия некоей среды, квантово-механически идентичная оригиналу, за исключением того, что температура новой среды равна Тнов., а температура прежней среды равна Тст., и если вы изготовите копию живой системы, такой, что ее квантово-механический гамильтониан, с точностью до унитарного преобразования, задается формулой Ннов. = (Тнов. / Тст.) Нст., то копия на самом деле жива и испытывает субъективные переживания, идентичные переживаниям оригинала, за исключением того, что все ее внутренние функции снижены в Тнов. / Тст. раз

306

Для читателя, склонного к математике, отмечу, что если температура T есть функция времени t и изменяется по закону T(t) ~ t-p, то интеграл от выражения в примечании 33, QT2, сойдется для p > У, тогда как полное число мыслей (интеграл T(t)) разойдется для p < 1. Таким образом, при У < p < 1 Мыслитель сможет продумать бесконечное число мыслей, потратив на это конечное количество энергии.

307

Для читателя, склонного к математике, ключевой момент здесь в том, что максимальная скорость избавления от отходов (считая, что Мыслитель сбрасывает отходы посредством дипольного излучения, основанного на электронах) пропорциональна Т3, тогда как рассеиваемая энергия пропорциональна Т2. Из этого следует, что, если мы хотим избежать ситуации, при которой тепловые отходы накапливаются быстрее, чем их можно сбрасывать, T должна быть ограничена снизу.

308

Среди компьютерщиков, ответственных за эти важные результаты, можно назвать Чарльза Беннета, Эдварда Фредкина, Рольфа Ландауэра, Томмазо Тоффоли и многих других. Содержательный и доступный рассказ об этом см. в: Charles H. Bennett and Rolf Landauer, "The Fundamental Physical Limits of Computation", Scientific American 253, no. 1 (July 1985): 48–56.

309

Точнее говоря, отменить проведенный расчет практически невозможно. Поскольку акт стирания информации есть физический процесс, мы, в принципе, могли бы отменить его тем же способом, каким можно было бы вновь сделать разбитое стекло целым: обратить вспять движение каждой частицы. Но, опять же, в любом практическом смысле это нереально.

310

Влияние космологической постоянной на будущее жизни и сознания рассматривали многие авторы. Задолго до наблюдательного открытия темной энергии Джон Бэрроу и Фрэнк Типлер проанализировали физику вычислений во вселенной, где есть космологическая постоянная, и объявили, что обработка информации непременно завершается, что означает конец для жизни и сознания (John D. Barrow and Frank J. Tipler, The Anthropic Cosmological Principle [Oxford: Oxford University Press, 1988], 668-69). Лоуренс Краусс и Гленн Старкман заново рассмотрели анализ Дайсона во вселенной с космологической постоянной и пришли к аналогичному выводу (Lawrence M. Krauss and Glenn D. Starkman, "Life, the Universe, and Nothing: Life and Death in an Ever-Expanding Universe", Astrophysical Journal 531 [2000]: 22–30).

Краусс и Старкман обосновали также, из общих соображений, что дискретная природа состояний в квантовой системе конечного размера аналогичным образом поставит под угрозу бесконечную мысль в любом расширяющемся пространстве-времени, даже при отсутствии в нем космологической постоянной. Однако Бэрроу и Хервик объявили, что при использовании температурных градиентов, порожденных гравитационными волнами, обработка информации может продолжаться бесконечно во вселенной, где нет космологической постоянной (John D. Barrow and Sigbj0rn Hervik, "Indefinite information processing in ever-expanding universes", Physics Letters B 566, nos. 1–2 [24 July 2003]: 1–7).

311

Фриз и Кинни пришли к аналогичному выводу; они утверждали, что в пространстве-времени, горизонт которого расширяется со временем (в отличие от горизонта вселенной с космологической постоянной, где размер горизонта постоянен), фазовое пространство непрерывно обретает новые моды (те, длины волн которых становятся меньше увеличивающегося размера горизонта), что обеспечивает системе постоянный приток новых степеней свободы, способных передавать тепловые отходы в окружающую среду, таким образом разрешая вычислениям продолжаться в будущем бесконечно долго (K. Freese and W. Kinney, "The ultimate fate of life in an accelerating universe", PhysicsLetters B 558, nos. 1–2 [10 April 2003]: 1–8). K. Freese and W. Kinney, "The ultimate fate of life in an accelerating universe", Physics Letters B 558, nos. 1–2 [10 April 2003]: 1–8.

312

Беккет С. В ожидании Годо. Пер. А. Михаиляна.

313

С тем фактом, что процессам с крохотными вероятностями могут потребоваться огромные интервалы времени, чтобы проложить путь в реальность, мы уже сталкивались в предыдущих главах. В одном из объяснений причины, запустившей, возможно, Большой взрыв, я отмечал, что космическим процессам, может быть, пришлось долгое время ждать, пока сложится в высшей степени маловероятная конфигурация и однородное инфляционное поле заполнит небольшую область пространства, где оно станет источником отталкивающей гравитации и запустит расширение пространства. В другом важном и общем примере я подчеркивал также, что второе начало термодинамики — это не закон в традиционном смысле, но, скорее, статистическая тенденция. Случаи снижения энтропии чрезвычайно редки, но если ждать достаточно долго, то даже самые маловероятные вещи все же происходят.

314

Freeman Dyson in Jon Else, dir., The Day After Trinity (Houston: KETH, 1981).

315

Из личного общения с Джоном Уилером в Принстонском университете 27 января 1998 г.

316

W. Israel, "Event Horizons in Static Vacuum Space-Times," Physical Review 164 (1967): 1776; W. Israel, "Event Horizons in Static Electrovac Space-Times", Communications in Mathematical Physics 8 (1968): 245; B. Carter, "Axisymmetric Black Hole Has Only Two Degrees of Freedom", Physical Review Letters 26 (1971): 331.

317

Jacob D. Bekenstein, "Black Holes and Entropy", Physical Review D 7 (15 April 1973): 2333. Красивый и доступный обзор расчета Бекенштейна можно найти в книге: Сасскинд Леонард. Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики. — СПб.: Питер, 2013. С. 154–157.

318

Точнее говоря, площадь увеличивается на одну квадратную единицу, если в качестве такой единицы выбирается одна четверть квадрата планковской длины.

319

Самое впечатляющее совпадение между наблюдениями и математическими предсказаниями можно увидеть на примере магнитных свойств электрона, весьма чувствительных к квантовым флуктуациям в пустом пространстве. Математические расчеты здесь иначе чем героическими не назовешь. В конце 1940-х гг. Ричард Фейнман предложил графическую схему для организации таких квантовых вычислений с использованием того, что сегодня мы знаем как фейнмановские диаграммы. Каждая диаграмма отражает один математический вклад, требующий тщательной оценки, а в конце расчета все вклады следует просуммировать. Для определения квантовых вкладов в магнитные свойства электрона (в дипольный момент электрона) исследователям потребовалось оценить более 12 000 фейнмановских диаграмм. Впечатляющее согласие между этими расчетами и экспериментальными наблюдениями относится к ряду величайших триумфов, достигнутых за счет понимания квантовой физики (см.: Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio, "Tenth-order electron anomalous magnetic moment: Contribution of diagrams without closed lepton loops", Physical Review D 91 [2015]: 033006).

320

Хотя я использую уголек в качестве аналогии, стоит отметить одно существенное различие между излучением, источником которого является привычное нам горение, и излучением черной дыры. Когда светится уголек, излучение возникает непосредственно от горения вещества, из которого он состоит; поэтому излучение несет на себе отпечаток конкретного вещества. Напротив, вся материя черной дыры сжата в ее центральную сингулярность — и чем массивнее черная дыра, тем большее пространство разделяет эту сингулярность и горизонт событий черной дыры, — так что излучение, исходящее от горизонта событий, не будет, судя по всему, нести на себе отпечатка материального состава черной дыры. Эта разница — один из способов понять происхождение того, что мы знаем как информационный парадокс черной дыры. Если излучение, исходящее от черной дыры, нечувствительно к конкретным ингредиентам, из которых эта дыра сформирована, то к моменту, когда черная дыра полностью превратится в излучение, эта информация будет потеряна. Такая потеря информации нарушила бы квантово-механическое развитие Вселенной, поэтому физики не один десяток лет пытались установить, что эта информация не пропадает. Сегодня большинство физиков согласны в том, что у нас имеются сильные аргументы в пользу сохранения этой информации, но множество важных деталей по-прежнему остается на переднем плане исследований.

321

Формула Хокинга показывает, что излучение абсолютно черного тела, испускаемое шварцшильдовской черной дырой (незаряженной и невращающейся черной дырой) массой M, задается формулой TХок. = hc3/16n2GMkb (h — постоянная Планка, c — скорость света, G — гравитационная постоянная, kb — постоянная Больцмана). S. W. Hawking, "Particle Creation by Black Holes," Communications in Mathematical Physics 43 (1975): 199–220.

322

Don N. Page, "Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole", Physical Review D 13 no. 2 (1976), 198–206. Приведенные числа уточняют расчет Пейджа с учетом более свежих оценок свойств частиц, особенно ненулевых масс нейтрино.

323

Точнее, шар, радиус которого не превосходит так называемого радиуса Шварцшильда, зависимость которого от массы M выражается формулой КШв. = 2GM/c2.

324

Обратите внимание: я говорю о том, что можно было бы назвать эффективной средней плотностью черной дыры: это ее полная масса, деленная на полный объем, содержащийся внутри сферы, равной по радиусу ее горизонту событий. Такое представление интуитивно полезно, но является, как заметит знающий читатель, в лучшем случае эвристическим. Когда формируется черная дыра, радиальное направление в пределах ее горизонта событий становится времениподобным, так что понятие внутреннего пространственного объема черной дыры становится более тонким делом (к тому же оно становится расходящимся). Более того, масса черной дыры не заполняет равномерно этот объем, так что вычисленную нами среднюю плотность сама черная дыра не реализует. Тем не менее средняя плотность черной дыры, как мы ее определили, позволяет интуитивно представить, почему более крупные черные дыры создают вокруг себя менее экстремальную внешнюю среду и испускают хокинговское излучение с более низкой температурой.

325

В предыдущей главе мы заметили, что ускоренное расширение пространства порождает крохотную постоянную температуру примерно в 10–30 K. Температура черной дыры с массой больше чем примерно в 1023 масс Солнца была бы меньше нормальной температуры пространства в далеком будущем. Однако по размеру такая черная дыра превосходила бы сам космологический горизонт.

326

Математика подсказывает, что фотоны, проходя через поле Хиггса, не испытывают никакого лобового сопротивления, что делает их безмассовыми, а хиггсовское поле невидимым.

327

Питер Хиггс в «Что такое космос?» — первом из четырех эпизодов документального фильма студии NOVA The Fabric of the Cosmos, основанного на одноименной книге. Среди других физиков, которые примерно в это же время разрабатывали похожие идеи, можно назвать Роберта Браута и Франсуа Энглера, а также Джеральда Гуральника, Ричарда Хагена и Тома Киббла. Хиггс и Энглер разделили Нобелевскую премию за свою работу.

328

В этом конкретном числе меньше смысла, чем могло бы показаться. Величина 246 (или, точнее, 246,22 ГэВ, где ГэВ — традиционная единица под названием гигаэлектронвольт) зависит от математических соглашений, которые обычно принимают физики. Менее стандартные соглашения выдали бы эквивалентную физику с другими численными значениями.

329

Sidney Coleman, "Fate of the False Vacuum", Physical Review D 15 (1977): 2929; Erratum, Physical Review D 16 (1977): 1248.

330

Точнее говоря, эта сфера будет расширяться сначала медленно, а затем скорость ее расширения стремительно вырастет почти до скорости света.

331

A. Andreassen, W. Frost, and M. D. Schwartz, "Scale Invariant Instantons and the Complete Lifetime of the Standard Model", Physical Review D 97 (2018): 056006.

332

Идея о том, что наша Вселенная могла бы появиться из высокоэнтропийной однородной ванны частиц, летающих и сталкивающихся в пустоте, в которой редкие спонтанные провалы к более низкой энтропии приводили в результате к возникновению упорядоченных структур, которые мы видим вокруг, была предложена Людвигом Больцманом в двух статьях (Ludwig Boltzmann, "On Certain Questions of the Theory of Gases", Nature 51 [1895]: 1322, 413-15; Ludwig Boltzmann, "Entgegnung aufdie warmetheoretischen Betrachtungen des Hrn. E. Zermelo", Annalen der Physik 57 [1896]: 773-84). Позже Артур Эддингтон указал, что, поскольку менее существенные провалы в энтропии имеют больше шансов на реализацию, намного более вероятно, что такие флуктуации не привели бы к возникновению целой вселенной, полной звезд, планет и людей — очень впечатляющее падение энтропии, — но породили бы только «математических физиков» (наблюдателей, занятых теми самыми мысленными экспериментами, которые он исследовал) в неорганизованной в остальном среде (A. Eddington, "The End of the World: From the Standpoint of Mathematical Physics", Nature 127, no. 1931 [3203]: 447-53). Много позже представление о «математических физиках» было редуцировано до более скромного снижения энтропии — порождающего лишь воспринимающие компоненты наблюдателей, получившие название «больцмановских мозгов» (насколько мне известно, впервые этот термин был использован в: A. Albrecht and L. Sorbo, "Can the Universe Afford Inflation?" Physical Review D 70 [2004]: 063528).

333

По причинам, названным в этой главе, я сосредоточусь на спонтанном возникновении структур, способных мыслить — больцмановских мозгов, но спонтанное возникновение целых новых вселенных или спонтанное воспроизведение условий, которые запустили инфляционное космологическое расширение, также заслуживают внимания. Чтобы не перегружать эту главу, я рассмотрю такие возможности в примечаниях 22 и 34.

334

Опытный читатель признает, что я очень поверхностно рассматриваю и тонкости, и противоречия. Общего мнения о том, как вычислять вероятности различных спонтанных космологических флуктуаций, о которых я говорю, не существует. Леонард Сасскинд с коллегами в статье L. Dyson, M. Kleban, and L. Susskind, "Disturbing Implications of a Cosmological Constant", Journal of High Energy Physics 0210 (2002): 011 предложил подход, основанный на более ранней идее Сасскинда, известной как «комплементарность горизонта». Напомню, что, поскольку расширение пространства ускоряется, мы окружены далеким космологическим горизонтом. Локации, лежащие дальше космологического горизонта, удаляются от нас быстрее скорости света, так что у нас нет никаких шансов как-то соприкоснуться с чем-то, расположенным на этой дистанции или дальше. Сасскинд, вдохновленный такой изоляцией (и своей более ранней работой по черным дырам, у которых имеется собственная разновидность горизонта), призывает рассматривать только физические процессы, которые происходят в пределах нашей «каузальной области» — это можно представить себе как область пространства, лежащую в пределах нашего космологического горизонта, — отбрасывая, по существу, всю физику в потенциально бесконечной шири пространства, которая лежит за его пределами. Точнее говоря, Сасскинд утверждает, что физика вне нашей каузальной области дублирует физику внутри нее (примерно как волновое и корпускулярное описания частицы в квантовой механике представляют собой взаимно дополнительные способы описания одной и той же физики, физика внутренней и внешней областей тоже должна быть двумя взаимно дополнительными способами обсуждения одной и той же физики). При этом допущении реальность рассматривается как конечная область пространства с фиксированной космологической постоянной Л, порождающей температуру T ^Л — нечто вроде канонического случая с горячим газом в ящике с точки зрения элементарной статистической механики. Тогда вычисление относительных вероятностей двух различных макросостояний сводится к поиску отношения числа микросостояний, связанных с каждым из них. То есть вероятность заданной конфигурации пропорциональна ее энтропии. При таком подходе Сасскинд с коллегами отмечают, что собирание частиц в пределах нашей области и создание условий, необходимых для инфляционного Большого взрыва, намного менее вероятно (поскольку обладает низкой энтропией), чем прямое собирание частиц и порождение мира таким, каким мы его знаем, от звезд до людей (поскольку такая конфигурация обладает более высокой энтропией). Альтернативный подход к подсчету вероятностей предлагается в: A. Albrecht and L. Sorbo, "Can the Universe Afford Inflation?" Physical Review D 70 (2004): 063528; этот подход основан на инфляции, возникающей из локального квантового туннельного перехода. Этот подход дает принципиально иные вероятности. Альбрехт и Сорбо рассматривают флуктуации к более низкой энтропии — области, которая затем начнет инфляционно расширяться, — в пределах фоновой среды, которая сама по себе обладает высокой энтропией; это гарантирует, что полная конфигурация по-прежнему обладает высокой энтропией, повышая таким образом вероятности. Сасскинд с коллегами рассматривают энтропию только внутри самой флуктуации, рассуждая, что, поскольку эта область впоследствии будет инфляционно расширяться, все вне этой области лежит за пределами ее космологического горизонта и потому может быть оставлено за скобками. Более низкая полная энтропия, которую Сасскинд с коллегами присваивает этой флуктуации, резко понижает вероятность ее возникновения.

335

В примечании 9 к главе 2 я объяснил, что энтропию системы правильнее определить как натуральный логарифм числа доступных квантовых состояний. Так что, если некая система обладает энтропией S, число таких состояний равно eS. Если предположить, что система проводит почти равное время в любом из микросостояний, совместимых с ее макросостоянием, то вероятность P флуктуации от начального состояния энтропии S1 к состоянию конечной энтропии S2 задается отношением числа микросостояний, связанных с S S ^ | каждым из них, то есть*3 = е 2 / е 1 = е 2! *для ясности, запишем S2 = SI — D, где D — «падение» энтропии от начальной величины S1. Тогда Р = е s4,1 Л где мы видим экспоненциальное снижение вероятности как функцию от падения энтропии. Какова же в таком случае вероятность формирования больцмановского мозга? Ну, при температуре T частицы в нашей термальной ванне обладают энергиями, очень близкими к T (в единицах, для которых kB = 1), поэтому чтобы построить мозг массой M, нам потребуется прибрать к рукам около M/T таких частиц (в единицах, для которых c = 1).

Поскольку энтропия ванны меняется вслед за числом частиц, падение D, по существу, равно M/T и, соответственно, вероятность равна примерно e — M/T. За особенно наглядным примером мы можем обратиться к очень отдаленному будущему и взять T равным температуре термальной ванны, возникающей вокруг космологического горизонта, около 10–30 K, что составляет примерно 10–41 ГэВ (где ГэВ, гигаэлектронвольт, примерно равен энергии, эквивалентной массе протона). Поскольку мозг содержит около 1027 протонов, M/T равно примерно 1027/10-41 = 1068. Таким образом, вероятность спонтанного возникновения мозга примерно равна e-1068. Время, необходимое для получения разумного шанса на реализацию такого редкого события, пропорционально 1/(e—1068), а именно e1068, что в данной главе для простоты мы аппроксимируем как 101068.

336

Хотя время вполне может быть неограниченно, существует естественный и при этом конечный релевантный масштаб, известный как «время возвращения». Речь о нем пойдет в примечании 34, так что здесь достаточно сказать, что время возвращения настолько велико, что число случаев возникновения больцмановских мозгов, прежде чем мы достигнем этого предела, будет — несмотря на крохотную частоту их образования — огромным.

337

Особенно усердный читатель заметит, что мы неявно привлекаем принцип безразличия, описанный в примечании 8 к главе 3. То есть, когда я рассматриваю происхождение своего мозга, я считаю равновероятными все воплощения, обладающие одинаковой физической конфигурацией. Поскольку почти все они должны быть образованы в больцмановской манере, очень маловероятно, что обычная история, которую я рассказываю о том, как возник мой мозг, верна. Однако, как в примечании 8 к главе 3, можно возразить против применения принципа безразличия в ситуациях, нисколько не похожих на те, в которых этот принцип эмпирически проверен (бросание монет и костей, а также огромное число случайных ситуаций, с которыми мы сталкиваемся в повседневной жизни). Тем не менее многих ведущих космологов такой подход не устраивает, так что они рассматривают описанную мной в этой главе загадку больцмановского мозга вполне серьезно.

338

См.: David Albert, Time and Chance (Cambridge, MA: Harvard University Press, 2000), 116; Brian Greene, The Fabric of the Cosmos (New York: Vintage, 2005), 168.

339

Позвольте мне упомянуть еще два родственных подхода к разрешению этой проблемы. Один из них — представить, что со временем природные «постоянные» дрейфуют таким образом, что физические процессы, необходимые для формирования больцмановских мозгов, подавляются. См., к примеру: Steven Carlip, "Transient Observers and Variable Constants, or Repelling the Invasion of the Boltzmann's Brains", Journal of Cosmology and Astroparticle Physics 06 (2007): 001. Другой, который продвигает Шон Кэрролл с коллегами, состоит в том, что флуктуации, необходимые для формирования больцмановского мозга, при тщательном квантово-механическом анализе не возникают (K. K. Boddy, S. M. Carroll, and J. Pollack, "De Sitter Space Without Dynamical Quantum Fluctuations", Foundations of Physics 46, no. 6 [2016]: 702).

340

См., к примеру: A. Ceresole, G. Dall'Agata, A. Giryavets, et al., "Domain walls, near-BPS bubbles, and probabilities in the landscape", Physical Review D 74 (2006): 086010. Физик Дон Пейдж выбрал иной подход к проблеме больцмановского мозга, отметив, что в любом конечном объеме пространства, претерпевающего ускоренное расширение (таком, как наше), будет наблюдаться — за неограниченное время — неограниченное число спонтанно возникших мозгов. Чтобы избежать ситуации, когда наш мозг оказывается атипичным членом этого множества, Пейдж предположил, что наша область пространства не имеет впереди неограниченного времени, но, напротив, движется к какому-то концу. Его расчеты (Don N. Page, "Is our universe decaying at an astronomical rate?" Physics Letters B 669 [2008]: 197–200) указывают, что максимальный срок жизни нашей Вселенной составляет, возможно, всего лишь 20 млрд лет. Многие другие физики (см., к примеру: R. Bousso and B. Freivogel, "A Paradox in the Global Description of the Multiverse", Journal of High Energy Physics 6 [2007]: 018; A. Linde, "Sinks in the Landscape, Boltzmann Brains, and the Cosmological Constant Problem", Journal of Cosmology and Astroparticle Physics 0701 [2007]: 022; A. Vilenkin, "Predictions from Quantum Cosmology", Physical Review Letters 74 [1995]: 846) предлагают другие способы обойти проблему больцмановского мозга, используя иные математические формулы для расчета вероятности их формирования. Короче говоря, пока нет консенсуса в том, как следует считать вероятность подобных процессов; несомненно, это одно из тех плодотворных противоречий, что дают толчок дальнейшим исследованиям.

341

Kimberly K. Boddy and Sean M. Carroll, "Can the Higgs Boson Save Us from the Menace of the Boltzmann Brains?" 2013, arXiv: 1308.468.

342

По крайней мере, так выглядит история, основанная на уравнениях Эйнштейна. Определить, на самом ли деле это мощное сжатие станет концом, или какой-нибудь экзотический процесс воспротивится этому в последний момент, можно будет только с построением полной квантовой теории гравитации. В настоящее время научный консенсус склоняется к варианту, что туннелирование к отрицательному значению порождает терминальное состояние — в данном случае, подлинный конец времени.

343

Paul J. Steinhardt and Neil Turok, "The cyclic model simplified", New Astronomy Reviews 49 (2005): 43–57; Anna Ijjas and Paul Steinhardt, "A New Kind of Cyclic Universe" (2019): arXiv:1904.0822 [gr-qc].

344

Alexander Friedmann, trans. Brian Doyle, "On the Curvature of Space", Zeitschrift für Physik 10 (1922): 377–386; Richard C. Tolman, "On the problem of the entropy of the universe as a whole", Physical Review 37 (1931): 1639-60; Richard C. Tolman, "On the theoretical requirements for a periodic behavior of the universe", Physical Review 38 (1931): 1758-71.

345

Более вероятно, однако, что этот спор не найдет точного решения. Причина в том, что инфляционная парадигма может предусматривать также и отсутствие первичных гравитационных волн: модели, в которых масштаб энергий инфляции снижен, должны порождать слишком слабые волны, недоступные для наблюдений. Некоторые исследователи громогласно заявляют, что такие модели неестественны и потому менее убедительны, чем циклическая модель. Но это качественное суждение, по которому мнения исследователей разойдутся. Потенциальные данные, о которых я говорю (или, скорее, отсутствие таковых), наверняка станут поводом для горячих дискуссий в физическом сообществе между сторонниками этих двух космологических теорий, но маловероятно, что инфляционный сценарий будет отброшен.

346

Хотя в тексте главы это завело бы нас слишком далеко в сторону, здесь я отмечу, что существует вариант циклической космологии, который может вырастать также из более стандартных космологических сценариев. Эта космология, хотя и отличается существенно от описанного только что циклического подхода, тоже предусматривает последовательные эпизоды, но с многократно большими масштабами времени, да и возникает через совершенно иной механизм.

Необходимая теоретическая база в физике была разработана к концу XIX в. математиком Анри Пуанкаре и сегодня носит название теоремы Пуанкаре о возвращении. Чтобы получить представление о ее сути, подумайте о тасовании колоды карт. Поскольку вариантов расстановки карт конечное число (громадное, да, но определенно конечное), то, если продолжать их тасовать, рано или поздно порядок карт должен повториться. Пуанкаре понял, что если рассматривать, скажем, молекулы пара, беспорядочно летающие по контейнеру, то аналогичные повторения тоже с гарантией будут происходить. Представьте, к примеру, что я помещаю плотный комок молекул пара в один из углов контейнера, а затем позволяю им разлететься. Молекулы быстро заполнят контейнер и очень долго будут поддерживать однородное распределение, беспорядочно двигаясь по доступному пространству.

Но, если подождать достаточно долго, эти молекулы иногда будут случайно вставать в более упорядоченные низкоэнтропийные конфигурации. Пуанкаре пошел дальше. Он объявил, что молекулы, благодаря своему случайному движению, могут подойти сколь угодно близко к той самой конфигурации, с которой все началось: к плотному облачку в углу контейнера. Его рассуждения, хотя и сильно математизированные, аналогичны способу, при помощи которого мы заключили, что порядок карт в бесконечно тасуемой колоде должен повторяться. Бесконечный список случайных положений и скоростей частиц тоже необходимым образом повторяется. Вы можете усомниться в этом заявлении — в конце концов, в отличие от ситуации с колодой карт, существует бесконечно много различных конфигураций молекул пара в контейнере. Но Пуанкаре позаботился об этой сложности и не стал объявлять о точном повторении более ранней конфигурации; он говорил, скорее, о сколь угодно близком приближенном ее воспроизведении. Чем точнее желаемое воспроизведение, тем дольше придется ждать его реализации, но выберите любую желательную для вас точность, и частицы воспроизведут исходную конфигурацию с заданной точностью.

Хотя рассуждения Пуанкаре носят классический характер, в 1950-е гг. его теорема была перенесена на квантовую механику. Если запустить замкнутую систему с конкретными вероятностями нахождения ее частиц в конкретных локациях и позволить этой системе развиваться достаточно долгое время, то вероятности вновь примут значения, сколь угодно близкие к начальным, и этот цикл тоже будет повторяться без конца. Для рассуждений Пуанкаре, как классических, так и квантовых, принципиально важно, что пар заключен в контейнер. В ином случае молекулы постоянно улетали бы наружу, чтобы никогда уже не вернуться. Поскольку Вселенная — не замкнутый контейнер, вы можете подумать, что теорема Пуанкаре не имеет космологического смысла. Однако, как уже говорилось в примечании 22 к этой главе, Леонард Сасскинд утверждает, что космологический горизонт на самом деле действует как стенки контейнера: он ограничивает часть Вселенной, с которой мы можем взаимодействовать, конечными размерами и тем самым делает теорему Пуанкаре применимой. Таким образом, как пар в контейнере на чрезвычайно больших промежутках времени возвращается сколь угодно близко к любой заданной конфигурации, так же ведут себя и условия в пределах космологического горизонта: любая заданная конфигурация частиц и полей будет с любой заданной точностью повторяться снова и снова. Это буквальный вариант вечного возвращения. Основываясь на размерах нашего космологического горизонта, мы можем вычислить масштаб времени, необходимый для повторений; в результате получается самый длинный промежуток времени, который мы встречали до сих пор, — примерно 1010120 лет.

Невозможно не задуматься о таких повторениях и не подойти к ним с земными мерками. Каждый из ста миллиардов человек, живших и умерших на Земле, представлял собой некую конфигурацию частиц. Если эти конфигурации будут реализованы вновь, ну. вы сами видите, что подобные мысли ведут нас к тем местам, которых наука обычно избегает изо всех сил. Но, прежде чем уноситься воображением в неведомые дали, обратите внимание, что, как мы уже видели, спонтанные падения энтропии могут поставить под угрозу самую основу рациональных представлений. Если случайная конфигурация частиц и полей запускает новое космологическое развертывание — новый Большой взрыв — с возникновением в конечном итоге звезд, планет и людей, это одно. Однако если оказывается, что существует более высокая вероятность спонтанного воспроизведения таких условий, какие наблюдаются в сегодняшней Вселенной, — без Большого взрыва и без космологического развертывания, — то мы окажемся в такой же трясине, какую встречали в вопросе с больцмановскими мозгами. Даже если наша Вселенная действительно родилась космологическим способом, описанным нами в предыдущих главах, вглядываясь в далекое будущее, мы вынуждены будем заключить, что в подавляющем большинстве наблюдатели, подобные нам (среди которых будут и обладающие теми же воспоминаниями, что и мы, и потому объявляющие себя нами), возникли бы не путем описанной космологической последовательности. При этом каждый из них будет думать, что на самом деле его реальность возникла именно так. Как и в случае с больцмановскими мозгами, мы угодим в эпистемологическую трясину. Вы могли бы сказать, что это не подорвало бы наших представлений о реальности — вы, я и все, что мы знаем, вполне могло появиться в результате настоящего космологического развертывания. Тревожит, однако, мысль о том, что каждый в будущем тоже сможет цепляться за эту же самую утешительную историю, и все же большинство из них будут неправдой. Имея в виду, что огромное большинство наблюдателей на всех участках шкалы времени должны будут появиться не в результате стандартной космологической эволюции, нам потребуется убедительный аргумент в пользу того, что сами мы не принадлежим к заблуждающимся. Этот аргумент физики уже пытаются сформулировать, но пока ни один из предложенных вариантов не получил широкого признания. Отчасти вопрос заключается в том, что мы еще не до конца понимаем сплав квантовой механики и гравитации, так что все наши вычислительные схемы приблизительны. Перед лицом этой ситуации некоторые физики, в первую очередь Сасскинд, предположили, что космологическая постоянная, возможно, не постоянна на самом деле. В конце концов, если в далеком будущем космологическая постоянная обнулится, то эпоха ускоренного расширения завершится и космологический горизонт исчезнет. Этим Пуанкаре с его повторениями будет нейтрализован. Присяжные ожидают наблюдений, которые, в оптимистичном варианте, помогут нам заглянуть в это потенциальное возможное будущее.

347

Поскольку инфляционное расширение начинается в пределах крохотной области пространства, которая стремительно разбухает под действием силы отталкивающей гравитации, можно подумать, что получившееся в результате царство обязательно будет иметь конечные размеры. В конце концов конечный объект, как его ни растягивай, все равно останется конечным. Но реальность более хитроумна. В стандартной формулировке инфляции смешение пространства и времени приводит к тому, что наблюдатели внутри инфляционно расширяющейся области пространства оказываются в бесконечном просторе. Я объясняю это довольно подробно в главе 2 книги «Скрытая реальность», к которой и отсылаю заинтересованного читателя. Обратите также внимание, что инфляционная космология может выдать отдельную, но родственную мультивселенную: общей чертой многих инфляционных сценариев является то, что инфляционное расширение может выдать много — в общем случае бесконечно много — расширяющихся вселенных, и наша Вселенная оказывается всего лишь одной из многих. Набор таких вселенных известен как инфляционная мультивселенная и возникает из так называемой вечной инфляции. Аспекты описания мультивселенной, которые я привожу в этой главе, применимы также и к инфляционной мультивселенной. Подробности см. в главе 3 «Скрытой реальности».

348

Чтобы избежать взаимодействия по границам, можно окружить каждую такую область достаточно большим буфером, гарантирующим, что ни одна из областей не имеет контактов с остальными.

349

Jaume Garriga and Alexander Vilenkin, "Many Worlds in One", Physical Review D 64, no. 4 (2001): 043511. См. также: J. Garriga, V. F. Mukhanov, K. D. Olum, and A. Vilenkin, "Eternal Inflation, Black Holes, and the Future of Civilizations", International Journal of Theoretical Physics 39, no. 7 (2000): 1887–1900, а также книгу научно-популярного характера: Виленкин А. Мир многих миров. — М.: CORPUS, Астрель, 2010.

350

О роли эволюции в формировании этики рассказывается в: E. O. Wilson, Sociobiology: The New Synthesis (Cambridge, MA: Harvard University Press, 1975), откуда пошла новая парадигма для анализа человеческого поведения в целом и человеческой морали в частности. Подробный рассказ об одной из гипотез, в которой изложены возможные этапы эволюции человеческой морали, см. в: P. Kitcher, "Biology and Ethics", in The Oxford Handbook of Ethical Theory (Oxford: Oxford University Press, 2006), 163-85, и P. Kitcher, "Between Fragile Altruism and Morality: Evolution and the Emergence of Normative Guidance", Evolutionary Ethics and Contemporary Biology (2006): 159-77.

351

T. Nagel, Mortal Questions (Cambridge: Cambridge University Press, 1979), 142-46.

352

См., к примеру: J. Haidt, "The Emotional Dog and Its Rational Tail: A Social Intuitionist Approach to Moral Judgment", Psychological Review 108, no. 4 (2001): 814-34, и Jonathan Haidt, The Righteous Mind: Why Good People Are Divided by Politics and Religion (New York: Pantheon Books, 2012).

353

Борхес Х. Л. Письмена бога. — М.: Республика, 1994. Еще в этом абзаце упомянуты книги: Свифт Д. Путешествия Гулливера. — М.: Махаон, 2020.; пьеса Карела Чапека «Средство Макропулоса» в сборнике Чапек К. Пьесы. — М.: Искусство, 1959.

354

Bernard Williams, Problems of the Self (Cambridge: Cambridge University Press, 1973).

355

Aaron Smuts, "Immortality and Significance," Philosophy and Literature 35, no. 1 (2011): 134-49.

356

Samuel Scheffler, Death and the Afterlife (New York: Oxford University Press, 2016), 59–60.

357

Вольф пишет: «Наша уверенность в продолжении человеческого рода играет громадную, хотя по большей части молчаливую, роль в том, как мы задумываем свои действия и как понимаем их ценность». Samuel Scheffler, "The Significance of Doomsday", Death and the Afterlife (New York: Oxford University Press, 2016), 113.

358

Harry Frankfurt, "How the Afterlife Matters", в Samuel Scheffler, Death and the Afterlife (New York: Oxford University Press, 2016), 136.

359

Приверженцы многомировой точки зрения на квантовую механику могут рассматривать это описание в ином свете. Если все возможные исходы происходят в том или ином мире, то существование этого мира предопределено. Но тот факт, что среди возможных исходов имеются обладающие самосознанием конфигурации, не становится от этого менее необычайным.