ую сторону! Немаловажен вопрос расположения и типов поверхностей управления, от чего напрямую зависят устойчивость и пилотажные свойства самолёта. Естественно они не висят в воздухе, а крепятся к крылу, фюзеляжу, оперению, а иногда даже к гондолам двигателя и шасси! Вот где простор для фантазии конструктора! Но вместе с тем необходима и осторожность — ведь от решения этого вопроса зависят не только лётные качества самолёта, но и его безопасность.
Мы привыкли, что самолёт состоит из крыла, фюзеляжа и оперения. Но все ли они так уж нужны? Нельзя ли вычеркнуть что-то из этого списка, выиграв в весе и аэродинамическом сопротивлении? Многие конструкторы пытались сделать это, совмещая функции разных агрегатов в одном. Классический пример — самолёты-бесхвостки или летающие крылья, крыло которых создаёт не только подъёмную силу, но и уравновешивающие и управляющие аэродинамические моменты, благодаря которым самолёт устойчиво выдерживает заданную траекторию по воле пилота. А во многих случаях крыло служило ещё и для размещения грузов и даже пассажиров! Одной из самых интересных попыток отказаться от фюзеляжа в классическом понимании этого слова стал бомбардировщик ДБ-ЛК конструктора Беляева. Хотя сам он его считал «летающим крылом», у него были и оперение, и целых два фюзеляжа, пусть и маленьких, но крыло стало самым объёмным агрегатом планера. Увы, надежда превратить превосходство в аэродинамическом качестве в выигрыш в дальности и скорости не сбылась…
Немаловажно, к какому месту самолёта приложена тяга, которая заставляет двигаться его вперёд, и вообще компоновка силовой установки. Это очень многовариантная система и по способу создания тяги, и по расположению её агрегатов — двигателей, воздушных винтов, баков и многого другого. Очевидна связь её работы и с устойчивостью и управляемостью летательного аппарата. Переход на реактивную тягу, ставший величайшей революцией в истории авиации, не только не прекратил эксперименты с составом и компоновкой силовой установки, но и позволил конструкторам пойти в совершенно новых направлениях. Например, газотурбинная силовая установка оказалась способной создавать не только тягу, но и подъёмную силу или влиять на её величину путём обдува крыла. Но для этого снова потребовался отход от канонов.
Только в полёте живут самолёты! Эта строка из популярной некогда песни, конечно, верна, но чтобы подняться, надо сначала разбежаться, да и оканчивается полёт обычно пробегом по земле. И даже летательные аппараты с вертикальным взлётом и посадкой не обходятся без взлётно-посадочных устройств. Здесь проектировщику тоже есть к чему «приложить голову», недаром в начале прошлого века был популярен такой анекдот: когда конструктор спросил у лётчика, отделавшегося после не совсем удачного полёта лёгким испугом, как тому его новый самолёт, тот ответил: так себе, но большое спасибо за шасси!
А между тем от шасси может зависеть не только безопасность и удобство руления, взлёта и посадки, но те же скорость, высотность, маневренность и дальность, ведь вес и размеры стоек, колёс и систем управления ими могут быть весьма велики относительно остальных агрегатов. За долгую историю самолёта как вида техники схемы шасси менялись неоднократно и подчас весьма существенно. Но не все нововведения приживались, и на тех самолётах, что летают сегодня, остались по сути две господствующие схемы — трехопорные с хвостовым и носовым колесом. Хотя, конечно, есть машины (особенно, из тяжёлых) с тремя и более основными опорами, есть шасси типа «тележка» и «велосипед», но именно эти две компоновки — это тот самый канон, к которому все привыкли. Причём если на заре авиации доминировала (пусть и не единолично) первая, то с середины XX века она «ушла в тень» и теперь встречается разве что на лёгких самолётах — общего назначения и спортивных. Однако этот «переворот» прошёл не так уж легко и просто, как кажется теперь, и поначалу носовая опора шасси встретила бурное неодобрение многих авиационных специалистов.
Самолёт — это не только планер, силовая установка, система управления и шасси, это ещё и целевая нагрузка, оправдывающая затраты на его постройку. Казалось бы, какая разница, что «вложить внутрь»? Действительно, есть летательные аппараты почти универсальные, по крайней мере, весьма и весьма многоцелевые. И всё же чаще всего назначение самолёта и соответствующая ему полезная нагрузка оказывают определяющее влияние на его облик. И правильно выбрать степень этого влияния — тоже задача конструктора, ведь если он всё подчинит, скажем, удобству размещения на самолёте очень мощного и разнообразного вооружения, тогда ему придётся пожертвовать какими-то другими жизненно важными качествами с соответствующими последствиями для всего комплекса тактико-технических данных создаваемой машины.
И последнее. Самолёт — это гармоничный ансамбль многих составных частей, каждая из которых влияет на все другие, потому что функционально связана с ними. И удачный баланс между всеми системами аэроплана — это тоже залог успеха: тогда все эти связи будут слаженно работать на достижение поставленной при проектировании самолёта цели не в ущерб тем качествам, которые конструктор по тем или иным причинам счёл второстепенными, а они оказались важны.
Автор новой «Исторической серии», уже хорошо известный вам Сергей ГЕОРГИЕВ, и художник-иллюстратор Арон ШЕПС покажут, как разные конструкторы в разное время пытались сделать свою «революцию в авиации» и что из этого вышло. Схемы созданных ими самолётов или их отдельных агрегатов можно было бы назвать «оригинальными», однако в некоторых случаях это было лишь повторение чужого более раннего опыта. Их можно было бы охарактеризовать как «нестандартные» или «нетрадиционные», но некоторые из них, воплотившись впоследствии в других проектах, стали вполне стандартными и традиционными, оправдав себя в другом времени. Как нам кажется, наиболее точным определением для двенадцати самолётов, которые будут рассмотрены, станет термин «экспериментальная машина». Действительно, хотя все они делались не ради чистой науки, а как прототипы для изделий практического применения, а некоторые даже выпускались серийно, всё же это были классические эксперименты, главным результатом которых стало расширение познаний человека. Особенно если учесть, что в науке отрицательный результат — это тоже результат.
ПУШЕЧНЫЙ ПЕРЕХВАТЧИК И-12
На рубеже 30-х гг. прошлого века улучшились лётные данные бомбардировщиков, их оборонительное вооружение и живучесть. Строились цельнометаллические самолёты, изучалось их бронирование, защита баков. Перехватчик с пулемётами уже не мог сбивать их, и началась разработка новых видов оружия, в том числе динамореактивных пушек — ДРП.
Идея изобретателя Курчевского заключалась в уменьшении отдачи орудия путём выброса назад части пороховых газов из открытой казённой части ствола. Снаряд калибра 76 мм с весом 3 кг по расчётам должен был получить скорость 400 м/с, достаточную для поражения воздушной цели. Пушка перезаряжалась пневматикой, а тканевая гильза сгорала. Несмотря на плохую анкету изобретателя, отсидевшего за растрату казённых денег, Курчевского поддержал зам наркома обороны Тухачевский, решивший перевести на ДРП всю артиллерию Красной армии, флот и авиацию. Идея была многообещающей, но взятая изобретателем схема с нагруженным стволом имела избыточную массу, и разместить такую пушку на самолёте оказалось непросто.
Проектирование пушечных перехватчиков было поручено сразу нескольким КБ, причём в ЦАГИ под общим руководством А. Н. Туполева делалось сразу несколько самолётов — как модификаций обычных машин, так и специальных. Проанализировав много вариантов, бригада В. Н. Чернышова предложила оригинальную, ранее не использовавшуюся в СССР компоновку.
Недостаток мощности существующих моторов компенсировали установкой двух двигателей «Юпитер» VI, но не как обычно, на крыле, а в носу и в корме короткой гондолы фюзеляжа, что уменьшало мидель самолёта и его сопротивление. Оперение поставили на двух тонких балках, свинченных из стальных труб. Они же отводили газы из пушек, которые стояли на крыле.
Самолёт имел традиционную для ЦАГИ цельнометаллическую конструкцию, но обшивка была уже не гофрированной, а гладкой. Правда, Чернышов перестраховался, пустив вдоль состыкованных по потоку листов кольчугалюминия на крыле и оперении внешние рифты с шагом 150 мм. Оперение было двухкилевым.
Постройка самолёта АНТ-23, который получил военное обозначение И-12, была начата на заводе № 22 в Филях 1 апреля 1929 г. Конструкция не была сложной, но из-за недостатка квалификации бригады Чернышова дело шло медленно, и самолёт выкатили на аэродром только 21 июля 1931 г. Первая рулёжка вскрыла целый букет недостатков выбранной схемы — силовая установка плохо охлаждалась, не давала расчётной тяги, большой стояночный угол из-за вынужденно высоких шасси вызывал повышенное сопротивление на разбеге, а находившиеся вне зоны обдува винтами рули направления не создавали достаточного управляющего момента, чтобы пересилить сопротивление двух костылей шасси.
Начались бесконечные переделки самолёта: поставили один центральный киль, поменяли передний капот мотора, заменили костыли… 29 августа 1931 г. лётчик-испытатель И. Ф. Козлов выполнил на И-12 первый полёт, однако машина больше стояла в ремонте, чем была в воздухе.
Первые стрельбы на земле 11 ноября прошли нормально, но при повторе от сотрясений деформировалось оперение. Неприятностей добавила авария на посадке. Ремонт занял всю зиму, и первая стрельба в воздухе состоялась только 21 марта 1932 г. Первый же выстрел разорвал левую пушку, сорвал её обтекатель и повредил систему управления. Козлов чудом смог посадить и без того плохой в управлении самолёт — хорошо, что левая хвостовая балка сломалась уже на пробеге. За это он был награждён орденом Красной Звезды.