Электротехнические и электромонтажные работы — страница 5 из 18

Конструктивные элементы электроустановок изготавливают из конструкционных электротехнических материалов, к которым относятся многие проводниковые и электроизоляционные материалы. Из стали изготавливают корпуса электрических машин, щиты, конструкции, на которые крепят токоведущие части; из пластмассы – корпуса электроизмерительных приборов, щитки, рукоятки рубильников; из керамики – основания реостатов и электронагревательных приборов.

Для изготовления и монтажа электроустановок применяют клеи, эмали, лаки, припои и подобные им материалы. Их называют вспомогательными электрическими материалами.

Для монтажа открытых и скрытых электропроводок применяют установочные провода. Их выпускают различных марок. Жилы проводов изготовляют из алюминия или меди. Установочные провода бывают с различными видами изоляции (резиновая, поливинилхлоридная, полиэтиленовая, хлопчатобумажная, из лавсанового шёлка и покрытые лаком). Провода выпускают однопроволочными и многопроволочными (гибкий провод).

Выбирая установочные провода, учитывают условия их прокладки (открыто, скрыто, в трубах), эксплуатации (напряжение, влажность, температура), силу тока, длительно проходящего по проводам и экономические факторы (без необходимости не применяют дорогостоящие провода).

Расчётами и испытаниями установлены допустимые длительные токовые нагрузки (сила тока) на провода. Зная или рассчитав, какой силы ток длительно должен проходить по проводу, выбирают токопроводящую жилу требуемой площади сечения. В зависимости от условий монтажа электропроводки и её эксплуатации, зная площадь сечения требующегося провода, по таблицам выбирают установочный провод нужной марки.

Монтажные провода применяют для монтажа электрических аппаратов, приборов, причём крепление этих проводов делают неподвижными. При выполнении указанной работы провода приходится изгибать, поэтому монтажные провода в отличие от установочных обладают повышенной гибкостью. Это свойство обусловлено тем, что жилы монтажных проводов изготавливают из мягкой медной проволоки (многопроволочные жилы – из тонких медных проволок, свитых друг с другом). Жилы монтажных проводов лужёные (покрыты оловом), благодаря этому они легко соединяются пайкой.

Токопроводящие жилы монтажных проводов изолируют капроновыми, лавсановыми или стеклянными нитями, поливинилхлоридом, полиэтиленом. В проводах некоторых марок пластмассовая изоляция защищена оболочкой из капрона или жилы сначала обмотаны нитями из триацетатного шёлка, а затем на обмотку нанесена изоляция из поливинилхлорида или полиэтилена. Изоляцию из таких материалов чаще делают сплошной – из пластиката, но применяют также плёнки из этих материалов (плёночная изоляция). Монтажные провода в зависимости от назначения бывают лакированными и экранированными.

Площадь сечения жил монтажных проводов небольшая – от 0,05 до 6 мм2, так как они не предназначены для больших токовых нагрузок. Количество изолированных друг от друга жил не более трёх. Если для подключения приборов и аппаратов требуется большее количество жил, то применяют монтажные кабели.

Кабель состоит из одного или нескольких изолированных друг от друга проводников (жил), заключённых в герметическую защитную оболочку из резины, пластмассы, алюминия или свинца. Защитная оболочка кабеля может иметь броню – обмотку из стальной ленты, плоской или круглой проволоки; такой кабель называют бронированным. Защитную оболочку или броню иногда покрывают джутовой пропитанной пряжей.


Рис. 20. Устройство кабелей:

а – контрольный марки КСБ, б – силовой марки СБ; 1 – токопроводящие жилы, 2 – бумажная изоляция жил, 3 – поясная изоляция из пропитанной маслом бумаги, 4 – свинцовая защитная оболочка, 5 – бумажная лента, покрытая битумом, 6 – броня из стальной ленты, 7 – наружное защитное покрытие из джутовой пропитанной пряжи и битума.


Кабели, предназначенные для прокладки непосредственно в земле (траншеях), в специальных сооружениях (каналах, туннелях), а так же внутри помещений при напряжении до 1 000В, называют контрольными кабелями. Контрольные кабели имеют от 4 до 37 жил.

Для передачи и распределения электроэнергии сооружают не только воздушные, но и кабельные линии. Для этих целей применяют силовые кабели. В отличие от контрольных кабелей силовые кабели рассчитаны на более высокое напряжение – 35 кВ и выше.

Работы по сооружению и ремонту кабельных линий электропередач выполняют высококвалифицированные рабочие – электромонтажники по кабельным сетям.

Полупроводниковые материалы

Электростанции вырабатывают переменный ток. Однако для большинства современных электронных устройств необходима энергия постоянного тока. Для преобразования переменного тока в постоянный применяют выпрямители, в которых используют приборы с вентильными свойствами, т. е. односторонней проводимостью. Для построения схем выпрямления можно использовать электровакуумные, ионные магнитные и полупроводниковые приборы. В настоящее время наибольшее распространение получили. выпрямители на полупроводниковых приборах, поскольку полупроводниковые выпрямители просты, обладают высоким КПД, имеют длительный срок службы.

Выпрямитель – это устройство, преобразующее переменный ток в постоянный или пульсирующий. Выпрямители классифицируются по следующим признакам:

• по количеству фаз (однофазные и трёхфазные);

• по виду выпрямительных элементов (вакуумные, полупроводниковые, магнитные и т. д.);

• неуправляемые и управляемые;

• по способу включения выпрямительных элементов (мостовые и с нулевой точкой);

• по виду нагрузки (она может быть активной, активно-ёмкостной, активно-индуктивной).

Для изготовления полупроводниковых приборов используют полупроводники. Полупроводники по электропроводимости занимают промежуточное место между проводниками и изоляторами. Для полупроводников характерно наличие двух типов проводимости: электронной, или п-проводимости, за счёт свободных электронов; дырочной, или р-проводимости, за счёт валентных электронов (дырок). Введение определённых примесей позволяет получать полупроводники п– или р-типа. Если полупроводник имеет две зоны с различными типами проводимости, то на их границе образуется п-р-переход, обладающий односторонней проводимостью электрического тока. При подключении положительного полюса источника тока к зоне с проводимостью р-типа, а отрицательного – к зоне с проводимостью п-типа дырки будут отталкиваться положительным потенциалом источника тока, а электроны – отрицательным. В результате этого они движутся навстречу друг другу, частично рекомбинируя в зоне перехода, а затем притягиваются к электродам источника питания, обеспечивая прохождение электрического тока через выпрямительный полупроводниковый диод, преобразующий переменный ток в постоянный.


Рис. 21. Электронно-дырочный переход диода:

а – ток через диод проходит; б – ток через диод не проходит.


Если же подключение выполнить иначе, то зона перехода обедняется носителями зарядов, а его сопротивление резко возрастает и ток через диод не проходит.

Для наглядности одностороннюю проводимость диода можно продемонстрировать с помощью установки, изображённой схематически.


Рис. 22. Схема установки для демонстрации односторонней проводимости диода.


В идеальном кристалле ток создаётся равным количеством электронов и дырок. Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещённости) собственная проводимость проводников увеличивается.

В полупроводниковых диодах следует различать сопротивление диода в прямом направлении RОпр, которое относительно мало, и сопротивление диода в обратном направлении RОобр, которое относительно велико, но не равно бесконечности.

Для полупроводникового диода установились следующие понятия, характеризующие его свойства: прямой ток (Iпр) – это ток, протекающий через диод в прямом направлении; выпрямленный ток – это среднее значение выпрямленного тока или постоянная составляющая пульсирующего тока; обратный ток (Iобр) – это ток, протекающий через диод, когда к диоду приложено обратное напряжение. Выпрямительный диод представляет собой прибор с одним р-п переходом и двумя выводами. Вывод, к которому течёт ток из внешней электрической цепи при прямом включении диода (вывод из зоны типа р), называют анодным; вывод, от которого прямой ток направляется во внешнюю цепь (вывод из зоны типа п), именуют катодом.

Промышленностью выпускается большой ассортимент германиевых и кремниевых диодов. Кремниевые диоды могут работать при более высоких температурах, чем германиевые (+125 °C и выше); они имеют более высокое обратное напряжение и меньшие обратные токи. Недостатком их является несколько большее сопротивление при включении в прямом направлении, а следовательно, большие падения напряжения и потери мощности.

В зависимости от конструктивного исполнения р-п перехода различают два типа германиевых кремниевых диодов: плоскостной и точечный.


Рис. 23. Точечный (а) и плоскостной (б) полупроводниковые диоды.


В точечном диоде р-п переход образуется в точке касания пластины из полупроводника (рис. 23, а) с остриём тонкой металлической иглы, при этом прямое направление соответствует прохождению тока от металлической иглы к пластине.

У плоскостных диодов (рис. 23, б) выпрямляющими свойствами обладает поверхность раздела двух областей полупроводника с электронной и дырочной проводимостями. Плоскостные диоды имеют б`ольшую площадь р-п перехода, вследствие чего допускают большие токи и обратные напряжения. Они имеют так же меньшее падение напряжения в прямом направлении, точечные диоды.