Электротехнические и электромонтажные работы — страница 7 из 18

Монтаж электропроводок выполняют, пользуясь чертежами и монтажными схемами.

При монтаже электрических проводок и электрооборудования большой объём занимают работы по заготовке отверстий, гнёзд и борозд в строительных конструкциях. Некоторые из рассматриваемых работ выполняют вручную, применяя зубила, пробойники, шлямбуры. В настоящее время эти работы выполняют в большинстве случаев с помощью электрифицированных, пневматических и пороховых инструментов, механизмов и приспособлений (перфораторы, монтажные пистолеты). К таким работам допускаются квалифицированные рабочие-электромонтёры в возрасте не менее 18 лет.

Крепёжные детали (штыри, спирали, скобы) и изолирующие опоры устанавливают в заранее заготовленные отверстия и гнёзда и закрепляют вмазкой, забиванием или приклеиванием. Для закрепления деталей вмазкой приготавливают раствор строительного гипса (алебастра), который затвердевает в течение 5-8 мин, поэтому его приготавливают в небольшом количестве и непосредственно перед использованием.

Приклеиванием закрепляют стальные или пластмассовые детали, предназначенные для крепления проводов и лёгких кабелей, ответвительные коробки, деревянные подрозетники и другие детали и изделия.

Подготовленные к прокладке провода и кабели размещают вдоль намеченных линий и закрепляют.


Рис. 29. Электромонтажные изделия, прикрепляемые к строительным конструкциям.


Рис. 30. Крепление ленточных проводов марки АППВ:

а – гвоздями при помощи деревянной оправки, б – гвоздями при помощи накладок, в – к пластмассовым крепёжным изделиям, приклеиваемым к несущему основанию.


Паяние и лужение

При монтаже вторичных цепей на панелях щитов, в шкафах, щитках, а также в распределительных устройствах применяют установочные провода преимущественно с медными жилами. Одним из видов соединения проводов является паяние их между собой. Для получения прочного соединения необходимо удалить с соединяемых поверхностей оксидную плёнку и создать условия взаимодействия твёрдого и жидкого металлов. При кристаллизации вступившего во взаимодействие с материалом паяемых деталей более лёгкоплавкого связующего металла образуется паяное соединение.

Пайка – это физико-химический процесс получения соединения в результате взаимодействия твёрдого паяемого (основного) и жидкого присадочного металла (припоя). Образующиеся в результате этого взаимодействия переходные слои на границах шва и соединяемых поверхностей деталей называются спаями. Формирование шва при пайке происходит путём заполнения припоем зазоров между соединяемыми деталями, т. е. процесс пайки связан с капиллярным течением. Одним из преимуществ пайки является возможность соединения за один приём в единое целое множества элементов, составляющих изделие. Поэтому пайка, как ни один другой способ соединения отвечает условиям массового производства. Она позволяет соединять разнородные металлы, а также металлы со стеклом, керамикой, графитом и другими неметаллическими материалами.

При пайке не происходит расплавления кромок паяемых деталей, поэтому проще сохранить в процессе нагрева требуемые форму и размеры изделия. Низкотемпературная пайка позволяет сохранить неизменными структуру и свойства металла соединяемых деталей. Важное преимущество пайки – разъёмность паяных соединений – делает её незаменимой при монтажных и ремонтных работах.

В соответствии со спецификой и особенностями технологического процесса пайку классифицируют:

• по характеру взаимодействия твёрдого и жидкого металлов при возникновении спая;

• по особенностям технологии образования паяного соединения;

• по способам нагрева.

По характеру взаимодействия основного металла с расплавом припоя и природе связей на границе основной металл – припой выделяют четыре вида спаев: бездиффузионный, растворно-диффузионный, контактно-реакционный и диспергированный.

По особенностям технологии образования паяного соединения (режим пайки, способ введения припоя, формирование шва) выделяют пайку капиллярную, диффузионную, контактно-реактивную, реактивно-флюсовую и некапиллярную.

Образующееся при пайке соединение по своему строению и составу неоднородно, включает литую прослойку (шов), спаи, диффузионные и прикристаллизованные зоны.

Шов – неоднородная по составу и строению прослойка между соединяемыми деталями, образующаяся в результате взаимодействия расплава припоя с паяемым материалом и последующей кристаллизации расплава в зазоре.

Спай – переходный слой на границе паяемая деталь – шов, образующийся в результате взаимодействия расплава припоя с паяемым материалом.

В зависимости от источника нагрева пайка может быть следующих видов: пайка паяльником, газопламенная, электродуговая, электросопротивлением, индукционная, экзотермическая, пайка электронным лучом, лазером, пайка в печи, погружением в расплавленную соль, погружением в расплавленный припой, волной припоя, электролитная пайка, пайка в нагретых штампах, инфракрасными лучами, в нагревательных матах и нагретыми блоками.

Наиболее простой метод пайки с нагревом паяльником широко применяют во многих областях техники и в быту. Простейший паяльник состоит из медного заострённого наконечника, закреплённого на стальном стержне с ручкой.

Независимо от способа нагрева и конструкции основное назначение паяльника – нагрев припоя до расплавления, накапливание расплавленного припоя и нанесения его на паяемое изделие, прогрев металла по месту пайки, а также удаление излишков расплавленного припоя.


Рис. 31. Электрический паяльник на подставке:

1 – медный сменный стержень, 2 – электронагреватель, 3 – изолирующая ручка.


Рис. 32. Пайка электрическим паяльником:

1 – припой, 2 – медный сменный, стержень паяльника (жало), 3 – электронагреватель.


Наибольшее применение в промышленности и в бытовых условиях получили электрические паяльники, которые в зависимости от материалоёмкости паяемых изделий имеют различные размеры. Рабочая часть паяльника представляет собой стержень из меди, медных сплавов и других материалов. Электронагреватель расположен с внешней стороны стержня или внутри его, изготовлен из материала с большим электросопротивлением; подачу теплоты в рабочую часть стержня – жала – регулируют изменением входного напряжения или периодическим отключением паяльника от электропитания. Эффективность электропаяльника зависит от теплоёмкости стержня и скорости восстановления температуры. Выбор паяльника производят по номинальной мощности, при этом выбранное значение мощности округляют до ближайшего значения унифицированного ряда. В конструкции электропаяльников принят ряд мощностей: 4, 6, 12 и 18 Вт – микропаяльники (напряжением 6 В); для печатного монтажа – 25, 30, 35, 40, 50 и 60 Вт, а для пайки объёмного монтажа – 50, 60, 75, 80, 100 и 120Вт.

В зависимости от расположения паяемого шва, конфигурации изделия и назначения паяльники имеют самую разнообразную форму.


Рис. 33. Электрический паяльник с нагревательным элементом, расположенным внутри стержня.


Паяльники с электрическим обогревом в зависимости от рода выполняемых работ выпускают различных типоразмеров и мощностей. Они могут иметь внутренний или наружный обогрев.


Рис. 34. Электрические паяльники с наружным обогревом:

а – универсальный со сменным нагревательным элементом, б – молотковый, в – угловой со сменным стержнем.


Нагревательные элементы изготовляют из жаростойкой проволоки (нихром), намотанной на слюдяное или керамическое основание. Для сокращения времени ремонта паяльника нагревательные элементы делают сменными. Отечественная промышленность выпускает бытовые электрические паяльники различной конструкции, рассчитанные на напряжение 127 и 220 В с номинальной мощностью 35–200 Вт. В зависимости от конфигурации паяемого шва наконечники (жало) к паяльникам могут иметь самую различную форму.


Рис. 35. Форма наконечников для электрических паяльников.


Материалы для наконечников должны иметь высокую теплопроводность, хорошо облуживаться, обладать пониженным окалинообразованием при температурах пайки, хорошо сопротивляться действию расплавленного олова и флюсов. Самым распространённым материалом для изготовления наконечников является чистая медь. Но для уменьшения износа рабочей части наконечников их изготовляют из сплава меди с хромом, никелем, теллуром, серебром или цинком.

Для удобства пайки, сокращения расходов припоя и электроэнергии электрические паяльники выпускают с термостатическим микропрерывателем тока, который выключает паяльник по достижении нужной температуря и снова включает, когда он немного остынет. При пайке в затемнённых местах паяльник снабжают вспомогательной лампочкой, включённой последовательно с нагревательным элементом. Лампочка хорошо освещает место пайки.

Кроме паяльников с электрическим подогревом существует ещё две группы паяльников, отличающихся по способу нагрева: без постоянного подогрева и с непрерывным подогревом газом или жидким топливом. Особую группу составляют паяльники специального назначения. Паяльники первой группы нагревают периодически в пламени паяльной лампы или в специальных горнах, работающих на жидком, твёрдом и газообразном топливе.


Рис. 36. Паяльники, нагреваемые в пламени паяльной лампы или в горне:

а – молотковый, б – торцовый, в – фасонный.


Паяльники с непрерывным подогревом отличаются тем, что медный стержень непрерывно подогревается открытым пламенем. В качестве топлива используют спирт, бензин, городской газ, ацетилен, водород. Паяльники, обогреваемые жидким топливом, обычно состоят из сосуда для топлива, горелки, запорных краников и наконечника. Такие паяльники очень удобны в работе и не требуют дополнительного оборудования.