Электротехнические и электромонтажные работы — страница 9 из 18

По механизму действия паяльные флюсы бывают защитные, реактивные, химического и электрохимического действий.

Низкотемпературные флюсы подразделяются на канифольные, кислотные, галогенидные, гидразиновые, фторборатные, анилиновые и стеариновые.

По природе активаторов определяющего действия высокотемпературные флюсы подразделяются на галогенидные, фторборатные, боридные и боридноуглекислые.

Для низкотемпературной пайки в качестве флюса применяют канифоль и её растворы в спирте или в органических растворителях; гидразин, древесные смолы, вазелин, а также их соединения с другими компонентами. Более активны флюсы, содержащие органические кислоты (молочную, лимонную, олеиновую и др.), а также их растворы в воде или спирте. Для ослабления коррозийного действия в эту группу флюсов добавляют канифоль или другие компоненты, не вызывающие коррозии.

Канифоль – это твёрдое стекловидное вещество с температурой плавления 125 °C, полученное из сосновой смолы. Она хорошо растворяется в спирте и во многих других органических растворителях, не вызывает коррозии металлов и сплавов, в нормальных атмосферных условиях стабильно и негигроскопично. Флюсовые свойства канифоли изменяются в зависимости от температуры: при нормальной температуре она обладает защитными свойствами; в расплавленном состоянии до температуры 200–300 °C она растворяет тонкий слой окиси меди; при температуре 310 °C начинает обугливаться и затруднять процесс пайки. Канифоль в качестве флюса применяют в твёрдом состоянии или в виде раствора в бензине, керосине или спирте. В канифоли содержится также терпентин, который нейтрализует абиетиновую кислоту, поэтому остатки флюса после пайки не вызывают коррозии соединения. Для повышения активности канифольных флюсов в них добавляют гидразин, анилин, триэтаноламин и другие компоненты. По своей активности эти флюсы близки к водным растворам хлористого цинка, но по антикоррозионным свойствам они приближаются к спиртовым канифольным флюсам; остатки флюса при паяном изделии вызывают незначительную коррозию. Канифольными флюсами, содержащими хлориды, можно паять при температурах 300–350 °C.

Для пайки меди и её сплавов, стальных и оцинкованных изделий оловянно-свинцовыми припоями отечественная промышленность выпускает паяльные канифольные лаки ЛТИ. Лак на место пайки наносят тонким слоем кистью или деревянной лопаточкой. остатки флюса после пайки можно не удалять, если изделие не предназначено для дальнейшего анодирования или окраски. Пайку с помощью паяльных лаков следует производить при температуре не выше 300-350 °C в хорошо вентилируемом помещении или под тягой.

Высокими антикоррозионными свойствами обладают флюсы на основе древесных смол и вазелина. Эти флюсы применяют для пайки радиоэлектронной аппаратуры, особенно когда требуются высокие изоляционные свойства. Среди слабокоррозионных флюсов хорошо известны флюсы на основе глицерина с небольшими добавками хлористого цинка, хлористого аммония, гидразина и др.

Высокой активностью и сильными восстановительными свойствами обладают флюсы, в состав которых входят водные или спиртовые растворы хлористых или бромистых солей гидразина. Растворы солей гидразина имеют, кислую реакцию, и хорошо очищают паяемую поверхность. Флюсами с салями гидразина можно паять медь и её сплавы, сталь, драгоценные металлы, никель, кадмий и свинец.

Наиболее употребительными флюсами для пайки медными, серебряными и жаростойкими припоями являются прокаленная бура и её смесь с борной кислотой. Для повышения активности флюса в эти смеси добавляют фтористые и хлористые соли металлов. Для пайки при особо высоких температурах и продолжительном нагреве к борной кислоте добавляют порошки металлов магния, титана, алюминия, боросодержащие и другие соли. В состав флюсов, используемых для пайки серебряными припоями, на ряду с хлористыми и фтористыми солями дополнительно выводят сложные соединения, например кремнефторид калия, метаборат натрия, фторборат калия и т. д.

Флюсы, предназначенные для пайки алюминиевых и магниевых сплавов должны иметь повышенную активность и хорошую способность разрушать плотные и прочные окисные плёнки. С этой целью во флюсы, состоящие из смеси хлористых солей, добавляют фтористые соли калия, натрия, лития, кадмия, алюминия и др. Самое большое распространение припайки легкоплавкими припоями имеет водный раствор хлористого цинка. Его приготовляют путём растворения металлического цинка в соляной кислоте. Для этой цели в ванну с кислотоупорной футеровкой загружают цинк, затем постепенно вливают кислоту.

В тех случаях, когда применение обычных флюсов (порошкообразных, жидких, пастообразных) затруднено из-за невозможности удаления их остатков после пайки, применяют газообразные флюсы, являющиеся продуктами распада фтористых или хлористых солей при нагреве. Продукты реакции разложения этих солей при нагреве используют в качестве флюса при пайке коррозийно-стойких сталей и жаропрочных сплавов припоями, имеющими температуру плавления ниже 1000 °C. Флюсообразующие соли помещают вместе с деталями в контейнер для пайки или подвергают нагреву (разложению) в специальной установке, откуда продукты реакции вместе с инертным газом по газопроводу направляют к паяемым деталям.

Качество готового флюса определяется не только его составом, но и последовательностью введения составляющих веществ при его изготовлении. В массовом производстве флюсы обычно изготовляют из технически чистых компонентов.

Качество пайки и возможность получения паяного соединения во многом зависит от правильного выбора флюса. При выборе флюса учитывают паяемый материал, тип припоя, необходимость очистки изделия от остатков флюса после пайки, способ нагрева, температуру и скорость пайки. Из всех приведённых факторов основным при выборе флюса является паяемый материал. Алюминий, магний, нержавеющая сталь и некоторые другие металлы невозможно паять, применяя канифольные флюсы. Для пайки таких металлов следует брать активные флюсы, обеспечивающие во время пайки удаление окисной плёнки и смачивание основного металла. Трудно поддаются пайке с канифолью сталь и чугун. Эти металлы легко паять с хлористым цинком или другими активными флюсами. Совершенно недопустимо применять кислотные флюсы при пайке электрической, радиоэлектронной или другой аппаратуры, промывка которой после пайки невозможна. В этом случае могут быть выбраны только некоррозионные флюсы, имеющие после пайки твёрдый, нелипкий и негигроскопичный остаток с хорошими изоляционными свойствами. Правильно выбранный флюс должен обеспечить смачивание основного металла припоем, быть безопасным в работе и по возможности наименее коррозионно-активным.

Приготовленные флюсы и пастообразные припои следует хранить в чистой посуде с плотно закрываемой пробкой. При открытом хранении вследствие испарения компонентов и поглощения влаги из атмосферы может произойти нарушение состава флюса, изменение его вязкости, цвета, товарного вида и флюсующей активности.

Лужение – покрытие тонким слоем олова какой-либо металлической поверхности, для защиты от окисления и ржавления. Этот слой олова называется полуда. Такие покрытия наносят на поверхность деталей с целью:

• облегчения процесса пайки труднопаяемых металлов (технологические покрытия);

• предотвращения нежелательного взаимодействия припоя и паяемого металла (барьерные покрытия);

• облегчения процесса пайки, при этом наносят припои;

• достижения необходимой пористости поверхности паяемого металла (в случае необходимости получения вакуумно-плотного соединения);

• обеспечения пайки неметаллических материалов (керамики, графита и др.).

Покрытие, нанесённое на места пайки, должно прочно сцепляться с паяемым материалом. Во время последующих нагревов в процессе неизбежной технологической обработки нанесённые покрытия не должны вздуваться и отслаиваться.

Наиболее широко применяют лужение изделий натиранием и погружением. Горячее покрытие погружением изделий в жидкий припой можно производить через слой расплавленного флюса или окунанием в жидкий флюс, а затем в ванну с расплавленным припоем.


Рис. 40. Лужение погружением:

1 – тигель, 2 – расплавленный припой, 3 – детали, подвергающиеся лужению.


Для получения качественного лужения необходимо обеспечивать удаление окислов с поверхности лудильной ванны, для этого на поверхности ванны создают защитный слой флюса или графитового порошка, которые надо периодически возобновлять. При лужении относительно небольших деталей, не имеющих внутренних полостей, пользуются лужением через слой флюса в в специальных ваннах. Температура в ванне должна быть постоянной, так как её повышение приводит к увеличению угара припоя и снижению качества лужения, а понижение – затрудняет условия лужения и увеличивает расходы припоя за счёт наплывов на лужёной поверхности. Толщина покрытия влияет на паяемость лужёных изделий.

Покрытие толщиной менее 2,5 мкм будет иметь удовлетворительную паяемость, если пайка производится немедленно после обработки повертности. Считается, что примерно такая же толщина покрытия достаточна для пайки при небольшом сроке хранения. При продолжительном хранении толщину покрытия берут 30 мкм.

Высокое качество покрытий обеспечивается нанесением металлов в вакууме в результате их испарения (термовакуумный способ). Этот метод даёт получать равномерное покрытие малых толщин (2–100 мкм) в условиях, обеспечивающих отсутствие окисления паяемого металла и металла покрытия.

К качеству покрытий предъявляются определённые требования, поэтому после выполнения лудильных работ необходимо производить его контроль: визуальный контроль изделий после покрытия (цвет, блеск, шероховатость поверхности); определение пористости и толщины слоя покрытий; испытание на коррозионную стойкость; определение следующие механических и физических свойств покрытий (пластичности, стойкости к высоким температурам и др.).

Оценку качества покрытий производят по внешнему виду (осмотр невооружённым глазом) на основании сравнения с эталонами и по результатам лабораторных методов испытания на основании требований к покрытиям, установленным