Энергетические аспекты международной политики — страница 4 из 28

Демографический тренд влияет на общий объем спроса на энергетических рынках (при этом нельзя забывать, что в последние годы наблюдается тенденция к замедлению общего прироста населения, а в развитых странах зачастую и к его убыли).

Социальный тренд воздействует на качественный рост потребности людей в новой продукции, технологиях, информации, предметах личного пользования и т. д.

Компетентный прогноз ожидаемого состава и масштабов применения новых энергетических технологий в период до 2050 г. в свое время дало МЭА[19]. Утверждается, что восемь классов технологий (более 120 наименований) преобразования энергии и девять классов (почти 170 видов) технологий использования энергии способны решить стоящие перед энергетикой задачи по меньшей мере до 2030 г.

Основной упор в своем докладе и перечне технологий МЭА делает на расширение использования ВИЭ, повышение их доступности и распространения с общим трендом на внедрение технологий четвертого энергоперехода.

Отдельно стоит отметить уникальную роль России в таких условиях. Помимо колоссальных запасов традиционных углеводородных источников энергии, Россия, в отличие от большинства стран Запада, имеет значительный ресурс неиспользованного гидропотенциала, что может стать ключом к обеспечению энергоперехода и снижению карбонового следа в нашей стране. Если в странах ЕС, США, Японии и других развитых государствах гидропотенциал используется на 60–80 %, то в России в настоящее время этот показатель составляет около 20 %.

Традиционные источники энергии

Под традиционными источниками энергии в большинстве исследований понимают углеводородные ресурсы, на протяжении последних 150 лет составлявшие основу топливно-энергетических балансов большинства стран мира. К ним относят уголь, нефть и природный газ.

Свойства данных энергетических ресурсов – высокая энергоотдача, невозобновляемость, технологическая развитость методов разведки, добычи, транспортировки, дальнейшей переработки и использования в энергетике, локализованность регионов добычи, наличие сопутствующих выбросов парниковых газов и других загрязняющих веществ в процессе переработки и сжигания.

Использовать уголь в качестве топлива начали еще на заре современной человеческой цивилизации. Добыча, пусть и примитивная, ископаемого каменного угля велась в Древнем Китае и античной Греции. Источники свидетельствуют, что углем отапливались многие древнеримские виллы, что подтверждают и результаты археологических раскопок на территории Помпей. Само название «антрацит» произошло от греческого слова «антракс» (anthrax), или «горящий камень», – так характеризовал уголь в 315 г. до н. э. ученик Аристотеля Теофраст.

С закатом Римской империи про каменный уголь почти забыли, используя для отопления и выплавки металла только древесный. Однако с повсеместным развитием металлургии и совершенствованием технологий запасы промышленной древесины резко сокращались, и к середине XVII в. человечество вновь обратилось к ископаемому углю как к базовому энергоресурсу.

Чуть ранее, в ХVI в. ученые впервые начали задумываться о происхождении данного минерала. Средневековый врач и алхимик Парацельс (Филипп Ауреол Теофраст Бомбаст фон Гогенгейм, 1493–1541) рассматривал уголь как сырье минерального происхождения, называя его «камни, измененные действием вулканического огня». Немецкий ученый-минералог Георг Агрикола (1490–1555) считал, что уголь – это отвердевшая нефть.

В XVII в. на территории многих европейских государств начинается целенаправленная разведка и разработка месторождений каменного угля, использование которого в качестве топлива на протяжении XVIII–XIX вв. постоянно росло, чему способствовало распространение паровых машин, а затем – появление технологий преобразования тепловой энергии в электрическую.

Эра угля продолжалась до изобретения двигателя внутреннего сгорания, после чего уголь был вытеснен из автомобильного, водного и железнодорожного транспорта.

С середины XX в. основными потребителями угля выступали теплоэнергетика, металлургия, а в удаленных районах и некоторых развивающихся странах – жилищно-бытовой сектор.

Если рассмотреть подробно достоинства и недостатки генерации электрической и тепловой энергии на угле, то к очевидным достоинствам можно отнести следующие:

1. Огромные мировые запасы. Только разведанных запасов угля при сохранении текущего уровня потребления хватит на 300–400 лет, их суммарный объем превышает 1 трлн тонн.

2. Уголь – один из самых надежных и независимых видов топлива (наряду с газом и мазутом). Предсказуемость добычи и транспортировки, независимость от сезонности и погодных условий делают его незаменимым в качестве резервного источника энергии.

3. Сравнительная дешевизна. Генерация энергии на угле при нынешнем уровне развития технологий в полтора-два раза дешевле, чем при использовании ВИЭ.

4. Взаимозаменяемость. Современный уровень развития технологий позволяет осуществлять перевод угольных теплоэлектростанций на биотопливо, газ и другие виды топлива со сравнительно минимальными вложениями, при этом сохранив действующую локацию и основные фонды и обеспечив непрерывность поставок энергии потребителям.

5. Энергобезопасность. Уголь в силу широкого распространения позволяет многим государствам и регионам обеспечивать энергетическую независимость от поставок более дефицитных видов топлива при генерации электрической и тепловой энергии.

6. Сравнительная легкость и безопасность хранения.

7. Химический состав позволяет использовать уголь не только для генерации энергии. Сам уголь и его побочные продукты используют при производстве фенола, углеродного волокна, металлического кремния, креозотового масла, нафталина, аспирина, мыла, красителей, шампуней, зубных паст и тканей. Активированный уголь применяют для производства фильтров для воды, очистителей воздуха и аппаратов для почечного диализа.

8. Минимальное количество отходов – за исключением дыма, образующегося при сжигании, что стало возможным благодаря эффективной инфраструктуре и технологиям. Кроме того, как мы объяснили выше, побочные продукты сжигания угля используются для производства других продуктов. При этом сейчас существуют различные альтернативы в виде бездымного угля и антрацитов высокого качества, которые позволяют минимизировать дымность производства при высокой теплоотдаче и генерационных характеристиках.

9. Низкие капиталовложения при строительстве объектов генерации, так как большинство существующих технологий производства электроэнергии и топлива уже оптимизированы для использования угля.

10. Возможность управлять нагрузкой при генерации тепла и электрической энергии в зависимости от объема подаваемого топлива.

11. Возможность транспортировки угля как первичного источника энергии – в отличие от гидро-, солнечной и ветровой энергетики, которые могут существовать только на подходящих территориях, а продукт генерации (электричество) приходится транспортировать на большие расстояния с неизбежными потерями.

12. Безопасность в случае аварийных ситуаций – особенно в сравнении с атомной, гидроэнергетикой и даже газовой генерацией. При использовании угля не приходится беспокоиться о масштабных последствиях возможной аварии.

13. Сравнительно невысокие требования к уровню компетенций обслуживающего персонала угольных теплоэнергостанций в силу сравнительной простоты производственных технологий.

К очевидным недостаткам угольной генерации можно отнести такие:

1. Уголь – невозобновляемый и небесконечный источник энергии, несмотря на то что запасы его значительны и существенно превосходят запасы газа и нефти.

2. Неэкологичность или даже антиэкологичность – выбросы CO2 от сжигания угля, по разным оценкам, составляют от 40 до 65 % антропогенного углекислого газа в атмосфере, что обеспечивает углю одну из ведущих ролей в процессах глобального потепления и изменения климата. Несмотря на то что выбросы современных теплоэлектростанций на угле значительно, на 40–50 %, ниже существовавших в XIX и XX вв., они все еще изрядны. Вдобавок загрязнение, которое вызывает сжигание угля, порой приводит к кислотным дождям в некоторых районах. Хотя причин кислотных дождей много, горящий уголь – их весомый источник, так как выделяет значительное количество диоксида серы и закиси азота. Следует отметить и определенную радиоактивность угля. Кроме того, канцерогенные выделения угольной генерации вызывают рак и иные клеточные мутации.

3. Высокая стоимость транспортировки, для которой требуется разветвленная транспортная система. Создание и использование такой инфраструктуры, помимо высоких затрат непосредственно на транспортировку угля, не только разрушает ландшафт, но и увеличивает загрязнение из-за выбросов различных транспортных средств.

4. Низкая экологичность самого процесса добычи угля. При разработке угольных пластов наносится серьезный урон природным объектам, животному и растительному миру.

5. Аварийность процесса добычи. В последнее столетие мир не раз сталкивался с крупными авариями и катастрофами на угольных шахтах, несмотря на предпринимаемые меры по обеспечению безопасности.


Рис. 4.

Доля угля в генерации электроэнергии в мире по состоянию на 2020 г., ТВт*ч

Источник:https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf?ysclid=lor93mpvlb473711278.


Тем не менее преимущества угля определяют в современных условиях его статус доминирующего источника энергии на планете (см. рис. 4), в основном за счет вклада Китая, Индии и развивающихся стран. Если ранее специалисты предсказывали постепенное сокращение темпов прироста угольной генерации с последующим превалированием вывода мощностей над вводом после 2030 г., то сейчас эти прогнозы существенно корректируются.