M19) и седьмое из простых чисел Мерсенна. Прошло почти полтора столетия, прежде чем швейцарский математик Леонард Эйлер нашел в 1732 году большее простое число. Еще полтора века спустя, в 1876 году, рекорд поставил Эдуард Люка, доказавший, что 127-е число Мерсенна (M127), равное приблизительно 170 ундециллионам[32], также является простым.
Хотя многие из чисел Мерсенна действительно простые, сам Мерсенн допустил в своих расчетах несколько ошибок. Например, он определил как простое число M67. Делители этого числа впервые нашел в 1903 году Фрэнк Нельсон Коул. 31 октября математика пригласили сделать часовой доклад в Американском математическом обществе. Во время лекции Коул, не говоря ни слова, подошел к доске и вручную сначала вычислил значение числа 267 – 1, а затем перемножил 139 707 721 и 761 838 257 287, продемонстрировав, что результаты совпадают, – и молча же вернулся на свое место под гром аплодисментов. Позже он признался, что на то, чтобы найти делители числа 267 – 1, у него ушло “три года воскресений”.
С 1951 года поиск простых чисел ведется исключительно с помощью компьютеров. Появление все более быстрых алгоритмов позволяет математикам вычислять все бо́льшие и бо́льшие простые числа Мерсенна. На момент написания этой книги самое большое известное простое число – M74207281, имеющее 22 338 618 знаков. Его вычислил 17 сентября 2015 года Кёртис Купер, профессор Университета Центрального Миссури, в рамках проекта GIMPS (Great Internet Mersenne Prime Search, “Масштабный интернет-проект по поиску простых чисел Мерсенна”) – добровольного совместного проекта распределенных вычислений, участники которого за двадцать с лишним лет его существования уже рассчитали пятнадцать самых больших простых чисел Мерсенна. По сложившейся традиции авторы открытия отметили свой успех, откупорив бутылку шампанского.
Итак, мы знаем, что такое простые числа, и доказали, что их ряд бесконечен. Нам известно, что в современном мире они могут приносить пользу и что они встречаются в природе. Но в области простых чисел еще много белых пятен: например, мы не знаем, верны ли определенные гипотезы. Одна из наиболее известных – проблема Гольдбаха, названная так в честь немецкого математика Христиана Гольдбаха. Гипотеза гласит, что любое четное число, большее двух, можно представить в виде суммы двух простых чисел. Для малых четных чисел это утверждение легко проверить: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 и так далее. С помощью компьютеров были проверены и гораздо большие числа – правило не подвело ни разу. Однако до сих пор неизвестно, верна ли гипотеза Гольдбаха во всех случаях.
Другая недоказанная гипотеза касается пар простых чисел, отличающихся на 2: таких как 3 и 5 или 11 и 13, – их еще называют числами-близнецами. Гипотеза о числах-близнецах гласит, что таких пар – бесконечное множество, однако доказать истинность этого утверждения пока никому не удалось.
Пожалуй, самая большая загадка простых чисел связана с их распределением. Среди малых натуральных чисел простые встречаются очень часто, но с ростом значений – все реже и реже. Математиков интересует, с какой скоростью убывает плотность простых чисел и как много мы вообще способны узнать об их частоте в числовом ряду. Какой-то строгой закономерности в их появлении не наблюдается, но это вовсе не значит, что они выскакивают где попало. В своей книге “Рекорды простых чисел” (The Book of Prime Number Records) Пауло Рибенбойм формулирует это таким образом:
Можно с довольно хорошей точностью предсказать количество простых чисел, меньших N (особенно при больши́х значениях N); с другой стороны, в распределении простых чисел в коротких интервалах наблюдается некая заложенная случайность. Это сочетание “случайности” и “предсказуемости” приводит к тому, что распределению простых чисел свойственны одновременно и упорядоченность, и элемент неожиданности.
Загадка простых чисел волнует многие поколения математиков. А ведь кажется, куда проще – даже дети в начальной школе могут объяснить, что такое простые числа, назвать несколько первых из них и определить, простое число или нет. Вот и Агниджо заинтересовался простыми числами в очень раннем возрасте, а заодно и кое-какими из нерешенных проблем вокруг них. А со временем этот интерес привел к увлечению другими великими тайнами теории чисел.
Простые числа – это еще и своего рода атомы числовой вселенной, из которых строятся все остальные натуральные числа. Казалось бы, есть все основания надеяться, что они будут подчиняться строгим законам – и предсказывать, где именно в числовом ряду появится следующее, не будет составлять никакого труда. Но нет, эти математические кирпичики поразительно непослушны и капризны. Именно это противоречие между ожиданием и реальностью, стойкое ощущение, что некие организующие принципы чрезвычайной важности находятся за пределами нашего разумения, не давало покоя математикам с античных времен.
И действительно, если рассматривать простые числа по одному или маленькими группами, создается ощущение, что закон им не писан. Но если взглянуть на все их множество, в нем, словно в гигантском косяке рыб или стае скворцов, начинает проявляться невидимый вблизи уровень организации. Одно из самых любопытных открытий в области простых чисел было сделано случайно, и мы уже упоминали о нем в предисловии. Произошло это в 1963 году. Заскучав на какой-то лекции, польский математик Станислав Улам начал рисовать на листке бумаги. Он записывал числа в клетки по квадратной спирали, поставив в центре единицу, виток за витком. Затем он обвел кружками все простые числа и обратил внимание на одну странность: по некоторым из диагоналей спирали, а также по нескольким горизонтальным и вертикальным линиям простые числа выстроились необычно густо. Спирали большего размера, построенные с помощью компьютеров и содержащие десятки тысяч чисел, демонстрируют ту же удивительную закономерность. Насколько можно судить, она сохраняется и дальше, какую бы огромную спираль нам ни вздумалось построить.
Часть из таких “плотных” линий спирали соответствует определенным формулам в алгебре, которые, как мы знаем, дают высокий процент простых чисел. Самая известная из них найдена Леонардом Эйлером и названа в его честь. Многочлен Эйлера n2 + n + 41 выдает простые числа для всех значений n от 0 до 39. Например, при n = 0, 1, 2, 3, 4 и 5 получаем соответственно 41, 43, 47, 53, 61 и 71. При n = 40 формула дает (не простое) число 412, но при более высоких значениях n продолжает и дальше с завидной частотой выдавать простые числа. Есть и другие похожие формулы, обладающие этим не совсем понятным свойством порождать большое количество простых чисел. Математики продолжают дискутировать по поводу значения закономерностей в спирали Улама и их связи с нерешенными задачами, такими как проблема Гольдбаха, гипотеза о числах-близнецах и гипотеза Лежандра (согласно которой между квадратами двух последовательных натуральных чисел всегда есть простое число). Бесспорно одно: спираль Улама наглядно демонстрирует, что закономерность существует и что, несмотря на кажущуюся беспорядочность распределения простых чисел, они следуют каким-то общим правилам, регулирующим их появление в больших группах.
Спираль Улама.
Самая полезная из известных теорем о распределении простых чисел так и называется – “теорема о распределении простых чисел” – и по праву считается одним из величайших достижений в теории чисел. Если в двух словах, она гласит, что при любом достаточно большом числе N количество простых чисел, меньших N, приблизительно равно N, деленному на натуральный логарифм N. (Натуральный логарифм числа x – это показатель степени, в которую нужно возвести число e, равное 2,718…, чтобы получить x.) Определить, где именно находится следующее простое число, по этой формуле невозможно, зато она дает довольно точное представление о том, как много в заданном интервале простых чисел, при условии что он достаточно велик.
В отличие от теоремы Евклида о бесконечности множества простых чисел, которую, как мы видели, можно доказать за минуту простыми словами, на доказательство теоремы о распределении простых чисел ушло целое столетие. Впервые, в 1792 или 1793 году, закономерность заметил немец Карл Гаусс, еще подростком, а спустя несколько лет, независимо от него, – француз Адриен-Мари Лежандр. Математики, конечно, уже давно знали, что интервалы между простыми числами увеличиваются с ростом значений, но после того, как во второй половине XVIII века были опубликованы расширенные таблицы простых чисел и более точные логарифмические таблицы, поиски конкретных формул, описывающих это уменьшение плотности, оживились. Гаусс и Лежандр обратили внимание, что плотность простых чисел близка к величине, обратно пропорциональной логарифму. Дальнейшее важное развитие эта работа по поиску функции распределения получила в трудах русского математика Пафнутия Чебышёва в период с 1848 по 1850 год. Но самый важный прорыв произошел в 1859 году, когда немец Бернхард Риман опубликовал свою статью “О числе простых чисел, не превышающих данной величины” (единственную его статью на данную тему). На восьми страницах ученый изложил свое предположение, позже названное гипотезой Римана, которое по сей день будоражит умы математиков, пытающихся его доказать. Считается, что Давид Гильберт как-то сказал: если ему суждено будет заснуть на тысячу лет, первое, чем он поинтересуется после пробуждения, – доказана ли уже гипотеза Римана. В своей книге о теории, на которой основано предположение Римана, американский математик Гарольд Эдвардс пишет:
На сегодняшний день это, бесспорно, самая известная математическая проблема, продолжающая привлекать внимание лучших математиков – не только из-за того, что ее так долго не удается решить, но также потому, что она кажется соблазнительно доступной, а ее решение, вероятно, приведет к появлению новых перспективных методик.