Эволюция и прогресс — страница 27 из 40

К сожалению, более объективные молекулярные методы обычно дают информацию только о времени эволюционной дивергенции видов. Дело в том, что удобные для регистрации различия в строении белков или нуклеиновых кислот чаще всего обусловлены нейтральными аллельными заменами, которые фиксируются с более или менее постоянной скоростью — скоростью мутирования (см. (3.26)).

В настоящее время существует ряд способов измерения так называемой морфологической (фенотипической) дистанции между двумя группами особей. Несмотря на различия в математическом оформлении, все эти оценки являются сложным отражением того, во сколько раз (или на сколько процентов) отличаются значения одних и тех же признаков у сравниваемых групп особей. По-видимому, из-за этого оцененные разными способами значения морфологических дистанций неплохо коррелируют друг с другом.

Многочисленные измерения фенотипических дистанций позволяют прийти к некоторым выводам, довольно существенным для нашей темы. Во-первых, для многих совсем не родственных видов животных средние расстояния между популяциями одного вида обычно весьма близки, и, во-вторых, для морфологических дистанций, отделяющих виды одного рода, также характерен свой средний уровень, который, как правило, в 1,5–2 раза превосходит межпопуляционный. Эти результаты наводят на мысль, что превращение популяций в виды сопряжено с достижением их особями вполне определенного значения относительного сдвига величины ряда количественных признаков. Что же происходит с видом в момент видообразования? Очевидно, приспособление к новым экологическим условиям.

Хорошо известно, что для каждого вида ряд жизненно важных параметров среды не должен выходить за пределы некоторых критических значений. Так, для жизни рифообразующих коралловых полипов необходимо, чтобы температура воды не опускалась ниже 20,5 °C. Полный комплекс требований вида к параметрам среды может быть объединен понятием экологической ниши вида. Таким образом, каждому виду соответствует его экологическая ниша. В одной нише устойчиво может существовать только один вид (принцип Гаузе), если вдруг по какой-то причине в ней окажутся два, то со временем один из них уступит место другому, скорее всего, он вымрет. Филетическое выживание вида (видообразование) сопряжено с его переходом в соседнюю экологическую нишу, при этом же, очевидно, происходят сдвиги значений многих количественных признаков особей. Мы уже отмечали (см. параграф «Аллометрия» в гл.2), что сдвиги подобного рода обычно связаны с изменением абсолютных размеров структур и прежде всего с изменением средней массы животного.

Знаменитый американский эколог Дж. Хатчинсон предположил, что для завершения экологической дифференциации средняя величина морфологического признака, непосредственно ответственного за адаптацию, должна измениться в какое-то фиксированное число раз. Оказалось, что довольно часто выполняется одно удивительное правило: массы особей родственных видов животных, обитающих в одной местности (т. е. в сходных экологических условиях), отличаются друг от друга в число раз, примерно кратное двум. Как будто для экологического разобщения особи таких видов должны различаться по массе примерно в 2 раза. Из этого правила Хатчинсона следует, что линейные размеры тела отличаются минимум в 21/3 ≈ 1,26 раза, или, грубо, на 30 %. Особенно четко это правило выполняется для размеров пищедобывающих структур животных. Прямые измерения показывают, что чаще всего линейные размеры этих структур (L) отличаются, как минимум, на 28 %. Отсюда вытекает, что размер L можно представить как некую минимальную величину Lmin, умноженную на произведение ряда сомножителей хi, близких к 1,28, т. е.

(5.1)

После логарифмирования этого выражения имеем

(5.2)

Заметим, что ∑lnxi представляет собой сумму близких по порядку независимо варьирующих величин, поэтому распределения большого числа видов по логарифму размеров или массы особей должны быть близкими к нормальным.

Формирование видовых распределений

Построим простейшую модель видовых распределений. Будем считать, что для экологической дифференциации видов их особи должны отличаться по размерам на 28 %, соответственно натуральный логарифм их размеров — приблизительно на 0,25. Разобьем горизонтальную ось, вдоль которой изменяется логарифм линейных размеров, на интервалы шириной 0,25. Пусть вид-основатель филетической группы по размеру своих особей находился в интервале х0. Через единичный отрезок времени (через один шаг модели) он произведет два дочерних вида, которые попадут в соседние интервалы х-1, и х1. Отметим, что интервал х0остается занятым материнским видом. В следующий временной отрезок каждый из трех видов приступит к «завоеванию» своих соседних интервалов. Продолжая такой процесс, мы вскоре получим довольно гладкое симметричное (биномиальное) распределение, очень близкое к нормальному. С каждым шагом оно расширяется, его дисперсия увеличивается пропорционально возрасту таксона, а сигма следует за квадратным корнем из этого возраста. Однако центр тяжести распределения (его среднее значение) должен оставаться на месте, точно соответствуя величине признака у вида-основателя филетической группы — х0 (рис. 18, а).

Ясно, что такая модель не объясняет правила Копа. Начнем ее усложнять. Быть может, мы получим искомый сдвиг распределения вправо, если зафиксируем его левую границу, т. е. примем, что вид с величиной тела меньше некоторого критического значения х* просто не может существовать. Подобное соображение выглядит вполне реалистичным. Например, для очень мелких теплокровных животных, таких как колибри у птиц и землеройки у млекопитающих, дальнейшее уменьшение размеров создало бы серьезные проблемы с поддержанием температуры тела. По-видимому, колибри, питающиеся очень калорийным нектаром, уже достигли левой границы распределения птиц. Кстати, в покое они не в состоянии поддерживать постоянную температуру.

Пусть критическое значение признака соответствует интервалу x-8. Отсюда следует, что вид, занимающий этот самый левый интервал, может дать дочерний вид только с увеличенным размером особей, заселяя интервал х-7. С ходом времени мы получим распределение, которое будет весьма походить на предыдущее, отличаясь от него практически только отсутствием части, расположенной слева от «поглощающего экрана» (рис. 18, б). Естественно, с ходом времени среднее значение такого урезанного распределения будет смещаться вправо, а незначительным сдвигом его вершины (моды) можно пренебречь. Однако тщательный анализ реальных видовых распределений (подобных представленным на рис. 17) обнаруживает четкое смещение их вершины вправо, т. е. в сторону увеличения признака.

Рис. 18. Моделирование динамики видовых распределений по логарифму величины количественного признака. а — вероятность изменения признака в обоих направлениях равна и не зависит от его величины; б — те же условия, но признак не может принимать значения меньше, чем x-8; в — ортоселекция (вероятность увеличения признака в 2 раза выше вероятности его уменьшения); г — рост адаптируемости (вероятность изменения признака в обоих направлениях равна и возрастает на 0,01 с переходом в соседний интервал справа); д — те же условия, что и в случае г (признак измеряется арифметической шкалой).


Есть два пути получить динамику распределений, близкую к реальной. Первый состоит во введении асимметрии в процесс заселения смежных интервалов, второй — в ускорении заселения обоих соседних интервалов (вполне симметричного) по мере увеличения размеров особей. Первый путь — это ортоселекция, когда дочерний вид заселяет быстрее интервал справа, чем интервал слева. Если мы предположим, что вероятность заселения правого интервала в 2 раза выше, чем левого, то получим картину, представленную на рис. 18,в. Видно, что распределение быстро расползается вправо и в ту же сторону сдвигается его вершина.

Обычно современные приверженцы синтетической теории эволюции считают, что за эти макроэволюционные тенденции ответственна именно ортоселекция. Их соображения выглядят примерно так. Увеличенные размеры тела дают индивидам очевидные преимущества: их бег становится быстрее и экономичнее, они лучше защищены от хищников и, наконец, они, обладая большей мышечной силой, имеют преимущества в драках с конкурентами за спаривание. Казалось бы все логично, хотя несколько антропоморфно. Действительно, людям свойственно воспевать крупных мужчин, их, так сказать, боевые качества. Попробуем посмотреть на это с иной точки зрения.

Увеличенная масса тела затрудняет бег по пересеченной местности, к тому же крупный индивид требует для поддержания жизни больше пищи. Кроме того, с увеличением массы тела, безусловно, падает скорость реакции на внешние раздражители — весьма немаловажное обстоятельство для выживания. Едва ли существует положительная корреляция между размерами тела охотника и количеством приносимой им добычи — основы благополучия первобытного человека. Наконец, увеличенные размеры означают некоторое удлинение онтогенеза и соответственно снижение шансов достичь взрослой стадии. Таким образом, без точных оценок всех плюсов и минусов мы не в состоянии найти простую связь между размерами особи и ее приспособленностью. Единственной твердо установленной закономерностью, связывающей размеры тела животных с приспособленностью, является правило Бергмана, согласно которому среднепопуляционная масса тела у теплокровных животных одного вида увеличивается, с понижением среднегодовой температуры. Этому правилу подчиняется большинство видов птиц и млекопитающих, верно оно и для людей.

Рассмотрим подробнее еще один путь, ведущий к результату, очень сходному с ожидаемым при ортоселекции. Пусть вероятность перехода дочерних видов в