Прямо против ветра идти на парусах, конечно, невозможно, но почему удается идти против ветра хотя бы под углом?
Возможность лавировать против ветра основывается на двух обстоятельствах. Во-первых, ветер толкает парус всегда под прямым углом к его плоскости. Посмотрите на рис. 1.10, а: сила ветра разложена на две составляющие — одна из них Fскольж заставляет воздух скользить вдоль паруса, а значит, на парус не действует, другая Fнopм — нормальная составляющая — оказывает давление на парус.
Рис. 1.10
Но почему же лодка движется не туда, куда ее толкает сила ветра, а примерно туда, куда смотрит нос лодки? Это объясняется тем, что движение лодки поперек килевой линии встречает очень сильное сопротивление воды. Значит, чтобы лодка двигалась носом вперед, надо, чтобы сила давления на парус имела бы составляющую вдоль килевой линии, смотрящую вперед. Это второе обстоятельство показывает рис. 1.10, б.
Для того чтобы найти силу, которая гонит лодку вперед, силу ветра придется разложить второй раз. Нормальную составляющую надо разложить вдоль и поперек килевой линии. Продольная составляющая и гонит лодку под углом к ветру, а поперечная уравновешивается давлением воды на киль лодки. Чаще всего парус устанавливают так, чтобы его плоскость делила пополам угол между направлением хода лодки и направлением ветра.
Крутой подъем труднее преодолеть, чем отлогий. Легче вкатить тело на высоту по наклонной плоскости, чем поднимать его но вертикали. Почему так и насколько легче? Закон сложения сил позволяет нам разобраться в этих вопросах.
На рис. 1.11 показана тележка на колесах, которая натяжением веревки удерживается на наклонной плоскости. Кроме тяги на тележку действуют еще две силы — вес и сила реакции опоры, действующая всегда по нормали к поверхности, вне зависимости от того, горизонтальная поверхность опоры или наклонная.
Как уже говорилось, если тело давит на опору, то опора противодействует давлению или, как говорят, создает силу реакции.
Нас интересует, в какой степени тащить тележку вверх легче по наклонной плоскости, чем поднимать вертикально.
Разложим силы так, чтобы одна была направлена вдоль, а другая — перпендикулярно к поверхности, по которой движется тело. Для того чтобы тело покоилось на наклонной плоскости, сила натяжения веревки должна уравновешивать лишь продольную составляющую. Что же касается второй составляющей, то она уравновешивается реакцией опоры.
Найти интересующую нас силу натяжения каната Т можно или геометрическим построением или при помощи тригонометрии. Геометрическое построение состоит в проведении из конца вектора веса Р перпендикуляра к плоскости.
На рисунке можно отыскать два подобных треугольника. Отношение длины наклонной плоскости l к высоте h равно отношению соответствующих сторон в треугольнике сил. Итак,
Т/P = h/l.
Чем более отлога наклонная плоскость (h/l невелико), тем, разумеется, легче тащить тело вверх.
А теперь для тех, кто знает тригонометрию: так как угол между поперечной составляющей веса и вектором веса равен углу а наклонной плоскости (это углы со взаимно перпендикулярными сторонами), то
Т/P = sin α и Т = P∙sin α.
Итак, вкатить тележку по наклонной плоскости с углом α в 1/sin α раз легче, чем поднять ее вертикально.
Полезно помнить значения тригонометрических функций для углов 30, 45 и 60°. Зная эти цифры для синуса (sin 30°=1/2; sin 45° = √2/2; sin 60° = √3/2), мы получим хорошее представление о выигрыше в силе при движении по наклонной плоскости.
Из формул видно, что при угле наклонной плоскости в 30° наши усилия составят половину вeca: Т = Р/2. При углах 45° и 60° придется тянуть канат с силами, равными примерно 0,7 и 0,9 от веса тележки. Как видим, такие крутые наклонные плоскости мало облегчают дело.
Глава 2Законы движения
Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут верны, но с разных точек зрения.
Не только картина движения, но и свойства движения могут быть совсем равными, если их рассматривать с разных точек зрения.
Вспомните, что происходит с предметами на пароходе, попавшем в качку. До чего они непослушны! Пепельница, поставленная на стол, опрокинулась и стремительно понеслась под кровать. Плещется вода в графине, и лампа колеблется, словно маятник. Без каких-либо видимых причин одни предметы приходят в движение, другие останавливаются. Основной закон движения, мог бы сказать наблюдатель на таком пароходе, состоит в том, что в любой момент времени незакрепленный предмет может отправиться в путешествие в любом направлении с самой различной скоростью.
Этот пример показывает, что среди различных точек зрения на движение имеются явно неудобные.
Какая же точка зрения наиболее «разумная»?
Если бы вдруг, ни с того ни с сего, лампа на столе наклонилась или пресс-папье подпрыгнуло, то вы подумали бы сначала, что это вам почудилось. Если бы эти чудеса повторились, вы настойчиво стали бы искать причину, которая выводит эти тела из состояния покоя.
Поэтому совершенно естественно считать рациональной точкой зрения на движение такую, при которой покоящиеся тела не сдвигаются с места без действия силы. Такая точка зрения кажется весьма естественной: покоится тело — значит, сумма сил, действующих на него, равна нулю. Сдвинулось с места — это произошло под действием силы.
Точка зрения предполагает наличие наблюдателя. Однако нас интересует не сам наблюдатель, а место, где он находится. Поэтому вместо «точка зрения на движение» мы будем говорить: «система отсчета, в которой рассматривается движение», или просто «система отсчета».
Для нас, обитателей Земли, важной системой отсчета является Земля. Однако зачастую системами отсчета могут служить и движущиеся по Земле тела, скажем, пароход или поезд.
Возвратимся теперь к «точке зрения» на движение, которую мы назвали рациональной. У этой системы отсчета есть имя — она называется инерциальной.
Откуда взялся этот термин, мы увидим немного ниже.
Свойства инерциальной системы отсчета, следовательно, таковы: тела, находящиеся в состоянии покоя по отношению к этой системе, не испытывают действия сил. Значит, в этой системе ни одно движение не начинается без действия силы. Простота и удобства такой системы отсчета очевидны. Ясно, что ее стоит взять за основу.
Чрезвычайно важно то обстоятельство, что система отсчета, связанная с Землей, не очень отличается от инерциальной системы. Мы можем поэтому приступить к изучению основных закономерностей движения, рассматривая их с точки зрения Земли. Однако надо помнить, что, строго говоря, все, что будет сказано в следующем параграфе, относится к инерциальной системе отсчета.
Не приходится спорить — инерциальная система отсчета удобна и обладает неоценимыми преимуществами.
Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях мы находим много наивных размышлений о причинах движения. Эти представления находят завершение у Аристотеля. По мнению этого философа, естественным положением тела является покой, — конечно, по отношению к Земле. Всякое же перемещение тела по отношению к Земле должно иметь причину — силу. Если же причины двигаться нет, то тело должно остановиться, перейти в свое естественное состояние. А таковым является покой по отношению к Земле. Земля с этой точки зрения есть единственная инерциальная система.
Открытием истины и опровержением этого неверного, но очень близкого наивной психологии мнения мы обязаны великому итальянцу Галилео Галилею (1564–1642).
ГАЛИЛЕО ГАЛИЛЕЙ (1564–1642) — великий итальянский физик и астроном, впервые применивший экспериментальный метод исследования в науке. Галилей ввел понятие инерции, установил относительность движения, исследовал законы падения тел и движения тел по наклонной плоскости, законы движения при бросании предмета под углом к горизонту, применил маятник для измерения времени. Впервые в истории человечества он направил зрительную трубу на небо, открыл множество новых звезд, доказал, что Млечный Путь состоит из огромного числа звезд, открыл спутники Юпитера, солнечные пятна, вращение Солнца, исследовал строение лунной поверхности. Галилей активно поддерживал запрещенную в те времена католической церковью гелиоцентрическую систему Коперника. Гонения со стороны инквизиции омрачили последние десять лет жизни великого ученого.
Задумаемся над аристотелевым объяснением движения и поищем в знакомых нам явлениях подтверждения или опровержения мысли о естественном покое тел, находящихся на Земле.
Представим, что мы находимся в самолете, отбывшем из аэропорта на рассвете. Солнце не нагрело еще воздуха, нет «воздушных ям», причиняющих многим пассажирам неприятности. Самолет движется плавно, неощутимо. Если не смотреть в иллюминатор, то и не заметишь, что летишь. На свободном кресле лежит книга, на столике покоится яблоко. Все предметы внутри самолета неподвижны. Так ли должно быть, если прав Аристотель? Конечно, нет. Ведь естественным положением тела является, по Аристотелю, покой на Земле. Почему же тогда, все предметы не собрались у задней стенки самолета, стремясь отстать от его движения, «желая» перейти в состояние «истинного» покоя? Что заставляет лежащее на столе яблоко, едва соприкасающееся с поверхностью стола, двигаться с огромной скоростью в несколько сот километров в час?