Есть аналогичное высказывание и у самого Чаплыгина. Глубоким смыслом исполнена его фраза, которую хочется без конца цитировать: «Научный труд — это не мертвая схема, а луч света для практики». Иногда этот луч виден сразу, иногда доходит к нам, как свет звезды, спустя долгие годы. Но доходит непременно, иначе бы мы блуждали в потемках.
БОГИ И НУЖДА
Математика пережила два периода. В первом задачи ставились богами (делийская задача об удвоении куба), во втором — полубогами (Паскаль, Ферма). Мы вошли в третий период, когда задачи ставит нужда.
ПОСТУЛАТ УЧИТЕЛЯ — УЧЕНИКА
В конце декабря 1909 года в Москве открылся XII съезд естествоиспытателей и врачей.
Все выглядело привычно торжественно, волнующе, начиная с первых минут, приличествовало событию, которого с нетерпением ждали сотни ученых всей России. Местом встреч вновь стало Благородное собрание в Охотном ряду. Извозчики с шиком подвозили к подъезду делегатов, укрывавшихся меховой полстью, прятавших носы в воротники — стояли сильные морозы. Расчесав бороды и усы у зеркала, поправив мундиры и сюртуки, делегаты отыскивали затем знакомых, радостно пожимали руки, поздравляли с праздником и поднимались по лестницам, устланным мягкими коврами.
Чаплыгина впервые избрали членом распорядительного комитета.
— Сергей Алексеевич, вам надлежит быть в президиуме...
— Сергей Алексеевич, не откажите в любезности вместе с Николаем Егоровичем показать гостям воздухоплавательную выставку...
Заботы, хлопоты, с ним советуются, с его мнением считаются: ведь он — один из устроителей съезда.
28 декабря — это был первый день съезда — заседание началось речью председателя распорядительного комитета профессора Д. Н. Анучина, после чего с докладом «Естествознание и мозг» выступил нобелевский лауреат Иван Петрович Павлов. Ему долго аплодировали.
Затем началась работа секций. Она сопровождалась осмотром специально подготовленных выставок. Особый интерес вызвали доклады организованной впервые секции воздухоплавания, показ планеров и моделей летательных аппаратов, устроенный на третьем этаже университетского здания. Чаплыгин бывал на всех заседаниях новой секции, проходивших в оживленных дискуссиях.
З1 декабря заседание открыл Жуковский. Он сделал сообщение «Грузоподъемность летательных машин и вихревая теория гребного винта». Тогда же было принято предложение создать комиссию для выработки воздухоплавательной терминологии. Предварительно решили: можно принять те из иностранных слов, которые уже вошли в обиход воздухоплавания, и те русские старые и новые термины, которые достаточно удачно выражают соответствующие понятия.
1 января — новое заседание секции. На нем, в частности, речь шла о конструкции моноплана Ф. Ф. Терещенко. Чаплыгин с немалым любопытством слушал пояснения его создателя, строго говоря, не очень технически точные, но проникнутые энтузиазмом и верой в будущее полетов на крыльях.
В кулуарах Сергей Алексеевич узнал: Федор Федорович Терещенко, богатый киевский сахарозаводчик, увлекся воздухоплаванием, стал вкладывать деньги в заинтересовавшее его дело. Он построил аэроплан, весьма напоминавший «Блерио‑XI». Очевидно, толчком к его созданию послужил знаменитый перелет через Ла‑Манш этого самолета, пилотируемого французским конструктором и летчиком Луи Блерио. Киевский заводчик также издал комплект чертежей своего моноплана. Чертежи демонстрировались на экране во время заседания секции.
На следующий день Жуковский познакомил аудиторию с современным состоянием аэродинамики в связи с воздухоплаванием. Выступили командир Санкт-Петербургского воздухоплавательного парка генерал А. М. Кованько — «О воздушных флотах» и академик М. А. Рыкачев — «Результаты подъемов шаров-зондов в России». 3, 4 и 5 января заседания продолжались.
Особенно насыщенным выдалось для Чаплыгина 5 января. Утром Сергей Алексеевич выступал в своей математической секции, а днем присутствовал на состязаниях моделей летательных аппаратов. Проходили они в зале Технического училища. Жюри возглавлял Николай Егорович.
Победителями стали С. С. Неждановский — по планерам и В. И. Рерберг — по аэропланам.
В памяти многих русских ученых эти декабрьские и январские дни запечатлелись как дни эмоционального и интеллектуального подъема. Съезд удался на славу, огромная работа была проделана не зря. Что касается Чаплыгина, то в его биографии съезд отразился особенно глубоко и значительно. И суть не в высоком представительстве, доверенном коллегами Сергею Алексеевичу, и не в хлопотных обязанностях, с блеском им выполненных. Суть в его научном вкладе в фундамент новой науки — аэродинамики.
Науки, как известно, не возникают вдруг, без связи с предшествующим временем. Обратимся поэтому к истории, далекой и близкой, и проследим хотя бы бегло, в общих, так сказать, чертах движение научной мысли к теоретическим основам современной аэродинамики.
...Подъемная сила крыла. Научная проблема, приобретшая необычайную актуальность именно тогда, в начале нашего века, но истоки ее теряются в туманной дали иных времен. Представим себе невозможное: что-то вроде научной конференции или модного нынче «круглого стола» с участием ученых-естествоиспытателей, пытавшихся понять и объяснить природу подъемной силы — той самой силы, без которой невозможен полет тела тяжелее воздуха, например птицы.
Первое слово дадим Леонардо да Винчи (1452—1519), великому итальянцу, внесшему немалый вклад в развитие механики. Вероятно, он сказал бы следующее:
— Я давно стремлюсь разрешить загадку полета птиц. Предполагаю, что птицу поддерживают быстрые удары крыльев. Под их действием воздух уплотняется. Таким образом, все дело в сжимаемости воздуха.
Исаак Ньютон (1643—1727) высказался бы, несомненно, в духе той механики, основы которой заложил именно он и он же сформулировал ее главные законы:
— Воздух состоит из несвязанных между собой частичек. Перемещаясь в потоке, набегающем на какое-либо препятствие, частички ударяются о него и тем самым отдают ему свое количество движения.
Леонард Эйлер, академик Петербургской академии наук, автор свыше восьмисот работ по самым различным отраслям знаний — от математического анализа до теории музыки, хорошо знавший труды Ньютона и опиравшийся на них в своих исследованиях по механике, думал, однако, иначе.
— Я полагаю, — заметил бы он, — что жидкость или газ следует характеризовать как непрерывную, легко изменяемую материю. Подходя к препятствию, струйки не ударяются о него, а плавно обтекают и смыкаются на задней стороне.
Коллега Эйлера, другой академик Петербургской академии наук Даниил Бернулли (1700—1782), который специально исследовал механику жидких и газообразных тел и вывел уравнение, связавшее скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении, скорее всего поддержал бы Эйлера.
Герман Гельмгольц (1821—1894), физик, физиолог и психолог, основоположник теории вихревого движения жидкости, и физик Густав Кирхгоф (1824—1887) в своих выступлениях сослались бы на разработанную ими струйную теорию и рассказали бы о таком опыте:
— Плоскую пластинку поставим под углом к набегающему потоку. Приближаясь к пластинке, струйки отклоняются от своего первоначального направления, вблизи пластинки расходятся к ее краям и плавно обтекают ее переднюю сторону. За пластинкой, по нашей теории, движение предполагается разрывным. Струйки срываются с кромок пластинки и текут дальше, постепенно приближаясь к своему изначальному направлению перед пластинкой. Поверхности разрыва создают за пластинкой застойную зону...
Итак, перед нами разные схемы обтекания тел потоками воздуха или жидкости, частью умозрительные, частью основанные на опыте, однако не на столько, чтобы быть верными во всех случаях. Скажем, теория Эйлера не учитывала силы трения, а струйная теория оказалась неприемлемой в случае хорошо обтекаемого или, как говорили ученые, удобообтекаемого тела: тогда срыва струй не происходит, и они текут плавно.
Вообще аэрогидродинамика развивалась до начала ХХ века крайне медленно. Собственно, началась она как серьезная наука с исследований Эйлера и Бернулли. Эйлер вывел общие уравнения, описывающие движение жидкостей и газов, исследовал многие вопросы сопротивления жидкостей применительно к кораблестроению и созданию гидравлических машин. Бернулли, которому, по общему признанию, принадлежит честь изобретения самого термина «гидродинамика», доказал, что по мере нарастания скорости потока давление в нем понижается, а при уменьшении скорости, наоборот, повышается (это соотношение между давлением в жидкости и ее кинетической энергией выражено уже упоминавшимся здесь уравнением, теперь оно фигурирует в научной литературе и учебниках как уравнение Бернулли). Оно справедливо и для безвихревого, и для вихревого движения, но во втором случае только для отдельных струек, которые составляют поток.
Долгое время аэрогидродинамика обобщала факты, добытые в гидравлике, теории сопротивления среды движущемуся судну и отчасти в баллистике — науке о движении артиллерийских снарядов.
Случалось, что теория, как бы замкнувшись в своем развитии на саму себя, приходила к выводам, не обещавшим практике никакой перспективы. Так, один из ученых, используя формулы струйной теории, доказывал: летать на аппарате тяжелее воздуха... вообще невозможно. Его расчеты неумолимо утверждали: подъемная сила меньше веса аппарата в три-четыре раза.
Мнение на этот счет русского механика и математика Н. Е. Жуковского было куда более оптимистичным, а после успешно совершенных полетов немецкого инженера Отто Лилиенталя на планере собственной конструкции оно превратилось в непоколебимое убеждение. Воздухоплавание, можно сказать, стало для него и страстью, и новой областью приложения интеллектуальной энергии. Жуковский с самого начала понимал, что без серьезной теоретической и экспериментальной основы все попытки путем «проб и ошибок» решать задачу полета человека на аппаратах тяжелее воздуха обречены. Во всяком случае к быстрому успеху не приведут.