Вероятно, по этой причине с насмешкой была принята современниками статья Рене Декарта (1596–1650), опубликованная в 1637 г. под названием «Рассуждение о методе направления разума для поиска научных истин», в которой он вроде, бы «доказал» этот закон с помощью довольно странных для нас рассуждений. Туманные фразы Декарта отнюдь не привели, в трепет восхищения его коллег. А то обстоятельство, что в результате своих рассуждений Декарт пришел к правильной формуле, объясняли весьма просто: подгонкой рассуждений под результат, который был уже известен ранее. Так что Декарту пришлось вытерпеть и обвинение в плагиате.
Пожалуй, можно присоединиться к скептическому отношению современников к этой статье. Декарт рассматривает мяч, брошенный на слабую сетку. Мяч прорывает сетку, и теряет половину своей скорости. Тогда, — пишет великий философ, — движение мяча совершенно отличается от его предназначения в одну или в другую сторону. Понять, что сие означает, трудновато. Возможно, этой фразой Декарт хотел сказать, что горизонтальная составляющая скорости движения мяча не меняется., а вертикальная меняется, поскольку именно в этом направлении сетка препятствует движению мяча.
Но возвратимся к закону преломления. Углы i и r принято откладывать от положения нормали так, как показано на ряс. 2.1.
Величина n, называемая показателем преломления, зависит от сред, о которых идет речь. Чтобы сравнивать тела по их оптическим свойствам, удобно составить таблицу показателей преломления для случая падения луча из воздуха (если быть педантичным, то следует сказать: из вакуума) в среду. В этом случае угол преломления всегда будет меньше угла падения, а значит; показатель преломления будет больше единицы.
Показатель преломления, вообще говоря, расчет с плотностью среды. Так, у алмаза показатель преломления равен 2,4, а у льда 1,3.
Я не стану уделять место таблице показателей преломления. Но если бы мне пришлось это сделать, то я должен был бы указать, для какой длины волны света приводятся данные. Показатель преломления зависит от длины волны. Это важное явление, лежащее в основе действия ряда приборов, разлагающих электромагнитное излучение в спектр, носит название дисперсии.
Если свет падает из более плотной среды в менее плотную, то может произойти полное внутреннее отражение. В этом случае показатель преломления меньше единицы. По мере возрастания угла падения угол преломления будет все больше и больше приближаться к 90°. При условии
sin r = 1, sin i = n
свет перестанет проходить во вторую сроду, а будет полностью отражаться от границы раздела. Для воды угол полного внутреннего отражения равен 49°.
Преломление света плоской пластинкой можно использовать для того, чтобы «сдвинуть», луч, оставив его параллельным caмомy себе. А с помощью призмы луч света можно повернуть.
Если читатель захочет вспомнить вывод формулы угла поворота D луча, то найдет его в школьном учебнике. Вывод требует лишь знания элементарной геометрии, но он очень громоздкий, в особенности если проделать его для толстой призмы и любого, значения угла встречи луча с призмой. Простая формула получается в том случае, если призма тонкая, а угол падения луча на грань призмы не слишком отличается от прямого. Если так, то
D = (n — 1)∙p
где p — угол между гранями призмы.
С помощью призмы в конце XVII века великий изотоп впервые доказал, что белый свет не монохроматичен, а состоит из лучей разных цветов. Сильнее всего отклоняются фиолетовые лучи, слабее всего — красные. Именно поэтому мы говорим «ультрафиолетовые» и «инфракрасные» лучи, а не инфрафиолетовые и ультракрасные.
Научный мир узнал об открытии Ньютона в 1672 г. В описании своих опытов Ньютон ясен и точен. Здесь виден его гений. Что же касается словесного обрамления, то понять его — труд великий. Лишь мучительно пробираясь сквозь лес слов, удается установить одно: хотя автор обещал описывать факты и не создавать гипотез (знаменитое ньютоновское «гипотезис нон финго»), своего обещания он не выполнял. Многие аксиомы и определения, вроде: «луч света — это его мельчайшая часть», звучат на редкость странно для современного уха.
Пока что несет свою службу в химии спектрограф, основной частью которого является ньютонова призма. Материал должен обладать большой дисперсией. Призмы для спектрографа готовят из кварца, флюорита, каменной соли. Исследуемый свет пропускают через щель, которая расположена в главной фокальной плоскости входной линзы. Поэтому на призму падает параллельный пучок света. Фотоны различной частоты пойдут в разных направлениях. Вторая, выходная линза соберет одинаковые фотоны в одной точке фокальной плоскости. При желании можно на спектр посмотреть глазом. Для этого надо поставить матовое стекло. Можно спектр сфотографировать.
В настоящее время спектр регистрируют с помощью самописцев. Вдоль спектра скользит приемник энергии — фотоэлемент или термоэлемент, дающий ток, сила которого пропорциональна интенсивности света.
Этот ток заставляет отклоняться подвижную часть записывающего устройства точно таким же образом, как ток гальванометра отклоняет его стрелку. К отклонившейся части приспосабливается перо; оно пишет спектр на рулоне бумаги, разворачивающейся с постоянной скоростью.
Существует, большая отрасль промышленности, которая изготовляет линзы. Прозрачные тела, ограниченные двумя сферическими поверхностями или одной сферической и одной плоской, встречаются самых разных размеров. В некоторых приборах используются линзы размером с десятикопеечную монету, в больших телескопах диаметр линзы может быть равен нескольким метрам. Изготовление больших линз — это великое искусство, ибо хорошая линза должна быть однородной.
Конечно, каждый из читателей держал линзу в руках и знает основные ее особенности. Линза увеличивает предмет, линза фокусирует лучи. При помощи линзы, поставленной на пути солнечного луча, легко зажечь клочок бумаги. Линза «собирает» лучи в одну точку. Это фокус линзы.
То, что параллельные, лучи сходятся в одной точке, и, наоборот, то, что линза создает параллельный пучок лучей, если точечный источник света поместить в фокусе линзы, доказывается с помощью закона преломления и простых геометрических соображений.
Если точка находится не в фокусе, а на расстоянии а от центра линзы, то исходящие от нее лучи соберутся на расстоянии а'. Эти два расстояния связаны известной формулой:
(1/a) + (1/a') = 1/f
здесь f — фокусное расстояние линзы.
Нетрудно показать, что лучи света, идущие от предмета, расположенного дальше двойного фокусного расстояния, создадут его перевернутое и уменьшенное в отношении а'/а изображение между фокусом и двойным фокусным, расстоянием.
Если перенести предмет в ту позицию, которую занимало изображение, то изображение перейдет в положение, которое занимал предмет. Работает так называемый принцип обратимости хода лучей.
Когда мы используем линзу как лупу, предмет лежит между линзой и ее фокусом. В этом случае изображение не переворачивается и лежит по ту же сторону, что и предмет (рис. 2.2).
Напоминаю различие между случаем лупы и двумя предыдущими примерами: лупа создаёт «мнимое» изображение, а при иных размещениях предмета мы получаем изображения, которые можно увидеть на экране или сфотографировать. С полным основанием мы их называем действительными.
Увеличение лупы тем больше, чем меньше ее фокусное расстояние. Предельные возможности лупы довольно скромные: угол зрения, под которым видно мнимое изображение, удается сделать от силы в 20–30 раз большим угла зрения, под которым мы видим предмет невооруженным глазом.
Многие оптические приборы были бы крайне простыми и состояли бы из одиночных линз, если бы не ряд неизбежных дефектов. Мы хотим чтобы параллельный пучок белого света собирался линзой в одной точке. Но этому мешает явление дисперсии. Ведь фотоны разного цвета будут отклоняться линзой в разных направлениях. В результате вместо точки мы получим растянутую вдоль оси линзы цветную линию. Это хроматическая аберрация.
Другой бедой является сферическая аберрация. Лучи, которые идут ближе к оси линзы, будут фокусироваться в более далекой точке, чем лучи, путь которых лежит подальше от оси.
По-разному ведут себя лучи, падающие на поверхность линзы под большими и малыми углами. Вместо точки мы получаем светящееся ядро, смещенное в сторону от правильной позиции. От ядра отходит хвост. Этот эффект называется комой. Слово «кома» в переводе с греческого означает нечто вроде «распущенные волосы».
На этом далеко не кончается перечень искажений, которые дает одиночная линза. Рассматривая квадрат, мы увидим четырехугольник, вершины которого соединены дугами, «проваленными» внутри. Происходит это потому, что лучи, исходящие из вершин квадрата и из середин его сторон, будут преломляться по-разному.
Большие неприятности доставляет конструкторам оптический приборов дефект, который называют астигматизмом. Если точка лежит вдалеке от главной оптической оси линзы, то ее изображение расщепится на две полоски, перпендикулярные друг другу и смещенные в противоположные стороны по отношению к позиции идеального изображения.
Есть и другие искажения. Специалисты в области производства линз сводят обычно все виды искажений к семи основным типам. Из них мы упомянули лишь пять.
Как это сплошь и рядом бывает в технике, при создании хорошей линзы мы должны избрать некое компромиссное решение. Совершенно ясно, что с размером линзы будут возрастать искажения, но, с другой стороны, освещенность изображения (т. е. число фотонов видимого света, приходящихся на единицу площади) пропорциональна квадрату диаметра линзы (т. е. ее площади). Но это еще не все. Допустим, что предмет, который изображает линза, находится далеко. Тогда изображение соберется в фокусе. Чем меньше фокусное расстояние, тем размер изображения будет меньше. Иными словами, поток света, исходящий из предмета, соберется на меньшей площади. Значит, освещенность будет обратно пропорциональна фокусному расстоянию.