Фотоны и ядра — страница 9 из 36

Электронный микроскоп — сложный и дорогой прибор. Обычно его «рост» — порядка полутора метров. Электроны разгоняются высоким напряжением. А за счет чего создается увеличение? Принцип тот же, что и у оптического микроскопа. Увеличение создается линзами. Но, разумеется, эти «линзы» совсем не похожи на линзы обычного микроскопа. Электроны фокусируются электрическими полями, приложенными к металлическим пластинам с отверстиями, а также магнитными полями, созданными катушками.

Существует множество различных технических приемов, помогающих создать изображение. При помощи микротомов изготовляются тончайшие срезы, рассматриваемые на просвет, молекулы на подложке оттеняются путем осаждения на них паров металлов. Можно также получить «реплику» образца, т. е. покрыть его тончайшей пленкой прозрачного материала, а затем стравить сам объект.

Электронная микроскопия — большой и важный раздел физики, ей стоило бы посвятить отдельную главу. Но малый объем сочинения гонит меня вперед.

Мысли о том, что при помощи выпуклых стекол можно рассматривать удаленные предметы, высказывались еще в XVI веке. Тем не менее мы не ошибемся, если припишем открытие телескопа (вернее — подзорной трубы) великому Галилею. Она была построена в июле 1609 г., и уже через год Галилей опубликовал свои первые наблюдения звездного неба.

Как и микроскоп, зрительная труба (телескоп-рефрактор) является в принципе комбинацией тех же двух линз — объектива, обращенного к предмету, и окуляра, обращенного к глазу. Так как рассматривается бесконечно удаленный предмет, то его изображение создается в фокальной плоскости объектива. Фокальная плоскость окуляра совпадает с плоскостью объектива, и из окуляра выходят пучки параллельных лучей.

Возможности телескопа растут с увеличением диаметра объектива. Так, например, большим телескопам доступны на Луне кратеры диаметром 1 км, в небольшие же телескопы обычно можно рассмотреть кратеры диаметром 150 км.

В астрономической обсерватории мы найдем не только телескопы-рефракторы. Придется наверняка познакомиться и с телескопом-рефлектором. Поскольку мы рассматриваем далекие предметы и требуется собрать лучи в фокусе, то для этой цели можно воспользоваться не сферической линзой, а сферическим зеркалом. Преимущество очевидно: мы избавляемся от хроматической аберрации. Недостатки зеркального телескопа связаны лишь с трудно осуществимыми высокими требованиями, предъявляемыми к поверхности зеркала.

Разумеется, и у телескопа имеется предел полезного увеличения, связанный с волновым аспектом света. Луч далекой звезды размывается в кружок, и это дает предел угловому расстоянию между звездами, которые мы можем разглядеть в телескоп. Желание увеличить возможности телескопа и здесь связано с увеличением его диаметра. Вероятно, предельные возможности телескопов лежат где-то близко к одной десятой секунды дуги.

В последние годы на помощь телескопам пришла новая техника. Астрономы изучают небо, фиксируя весь спектр электромагнитных волн, которые присылает нам космос. Немного мы поговорим о вторжении современной физики в тихую обитель звездочетов в гл. 7.


ИНТЕРФЕРОМЕТРЫ

Как уже неоднократно подчеркивалось, электромагнитное поле обладает волновым аспектом. Так же точно волновым аспектом обладают потоки частиц — электронов, нейтронов, протонов. Звук является результатом механических смещений среды, происходящих по закону волны. Общим для всех этих физических процессов является возможность приписать любому излучению длину волны, частоту и скорость распространения, связанные уравнением с = λv. Простейшее излучение монохроматично, т. е. описывается одной длиной волны. В общем случае излучение представляет собой сложный спектр, т. е. сумму волн разной длины и разной интенсивности.

Волновой аспект излучения проявляется в двух явлениях: при сложении волн, прошедших разные пути, а также при рассеянии телами, встречающимися по пути луча. Важный частный случай рассеяния волн — это дифракция. Сложение волн носит название интерференции.

Здесь речь пойдет об интерференции света. Это явление лежит в основе действия приборов, которые помогают точно измерять расстояния, а также некоторые другие физические величины. Приборы, использующие явление интерференции для прикладных целей, и носят название интерферометров.

Принцип измерения расстояний сводится к подсчету числа волн, укладывающихся на измеряемом отрезке.

На первый взгляд может показаться, что такие измерения проводить несложно. Возьмем два источника света и сведем их лучи в одну точку. В зависимости от того, придут ли волны в точку наблюдения «горб к горбу» или «горб к впадине», создастся светлое или темное пятно. Поставим теперь задачу измерить расстояние, на которое мы хотим переместить один из источников света. При таком перемещении фазовые соотношения двух волн в точке наблюдения будут меняться. Нам остается лишь считать количество смен света на темноту, и тогда, учитывая геометрию опыта и зная длину волны света, вычислим без труда величину перемещения.

В принципе все верно. Но, действуя таким способом, мы не будем наблюдать картины чередования света и темноты. Экран будет все время оставаться светлым. Итак, простой опыт не удался.

Совершено несомненным является такой результат: два луча света, испускаемые разными источниками, сведенные в одну точку, всегда будут усиливать друг друга. Так, может быть, волновая теория неверна?

Нет, теория верна, электромагнитному излучению присущ волновой аспект. Но мы попытались действовать, сделав неверное предположение. Для того чтобы наблюдалась интерференция, необходимо, чтобы между складывающимися волнами все время сохранялась неизменная разность фаз. А ведь фазовые соотношения даже между волнами, исходящими от двух атомов одного и того же источника, совершенно, случайны. Мы уже говорили, что атомы света выбрасывают фотоны, не «договариваясь» друг с другом о своем поведении. Следовательно, два разных источника излучают несогласованно, или, как говорят, создают некогерентное излучение.

Но не оказывается ли тогда согласованное, т. е. когерентное, излучение чем-то вроде Синей птицы? Не оказывается!

Решение проблемы исключительно красиво и в то же время крайне просто, как большинство оригинальных идей: надо заставить излучение атома складываться с самим собой! А для этого требуется расщепить луч, идущий от каждого источника, на две части, заставить эти две части одного луча пройти разные пути, а затем уже свести в одну точку. Вот при этом условии мы, наблюдая интерференцию и меняя разности путей частей расщепленного луча, и вправду можем измерить интересующие пас перемещение и длину, подсчитывая число чередований света и темноты.

Мы описали принцип, лежащий в основе интерферометрических измерений, открытый еще в 1815 г. французским физиком Огюстеном Френелем (1788–1827). Рассмотрим теперь способы, лежащие в основе действия интерферометров, с помощью которых расщепляют луч и создают разности хода между расщепленными частями луча.

Остановимся поподробней на интерференции лучей света, отраженных от внешней и внутренней сторон прозрачной пластинки или пленки. Явление заслуживает внимания как по своей практической значимости, так и потому, что наблюдается в природе. Кроме того, на этом примере легко уясняются многие важные понятия, которыми мы пользуемся при описании световых и других электромагнитных волн.

Рис. 2.5 позволяет вычислить сдвиг фаз между такими двумя лучами. Разность фаз определяется разностью хода, т. е. разностью путей, пройденных двумя лучами.



Как видно из чертежа, разность хода x = 2d∙cos r. Но как перейти от разности хода лучей к разности фаз, которая определяет, будут ли две волны усиливать или ослаблять друг друга?

Поговорим с читателем, которого не пугает формула косинуса. Колебание светового вектора в любой точке пространства, можно записать следующим образом: A cos 2π∙vt. Сдвиг по фазе, на угол φ означает необходимость добавления этого угла к аргументу косинуса. Если мы хотим сравнить фазы точек одной и той же волны, разделенных расстоянием х, то нам надо учесть, сколько длин волн укладывается на этом участке, и полученное число умножить на 2π. Эта величина и будет фазовым сдвигом. Итак, φ = 2π∙x/λ.

Теперь вернемся к интерференции лучей в пластинке. Выражение для разности хода мы записали. Значит, остается лишь поделить эту величину наλ. Но… стоп. Кто нам сказал, что длина волны света в пустоте и внутри прозрачной пластинки одинакова? Напротив, у нас есть все основания подозревать, что с волной что-то происходит, когда она переходит из одной среды в другую. Ведь существует явление дисперсии: фотоны разной частоты ведут себя по-разному. Частота, длина волны и скорость ее распространения, связаны равенством c = vλ. Какие же из этих величин меняются, когда волна попадает в другую среду? На этот вопрос отвечает опыт.

Можно непосредственно измерить скорость распространения волны в теле и убедиться в том, что показатель преломления, заставляющий волну изменять направление своего движения при косом падении на поверхность раздела двух сред, равен отношению скоростей распространения света в них. В случае, если одна из сред — воздух (точнее — вакуум),

c/v.

где с — принятое обозначение скорости света в пустоте, a v — скорость распространения в среде. Ну, а дальше? Какой из двух параметров — частота или длина волны — меняется при переходе света из воздуха в среду? Чтобы объяснить результаты интерференционных опытов, необходимо предположить, что частота фотона остается неизменной, а длина волны меняется. Поэтому для показателя преломления справедлива также формула

n = λ0/λ,

где λ0— длина волны в воздухе.

Вот теперь мы уже знаем всё, для того чтобы записать разность фаз между лучами в описываемом опыте с пластинкой. Поскольку один из лучей шел в воздухе, а второй — в стекле, то разность фаз будет равна