Геодезия строительной площадки для индивидуального дома...("Сделай сам" №1∙2006) — страница 8 из 37

К настоящему времени выявлен ряд причин, накладывающих повышенные требования на организацию электропитания современной электронной и вычислительной техники.

Во-первых, это параметры самой промышленной сети. Стандартным требованием к питающей сети является напряжение 220 В с допустимыми отклонениями от —15 % до +10 % от номинала (187–242 В) при частоте 50±1 Гц, определенные ГОСТ 13109-87 «Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения».

Требования ГОСТ весьма жесткие и однозначные. Но строгость российских стандартов (как и российских законов) смягчается необязательностью их выполнения (или соблюдения). Нередки случаи длительного «проседания» напряжения в электросети ниже 180 вольт. А от повышенного напряжения в сети пострадал не один бытовой холодильник или телевизор.

Вторым обстоятельством является то, что помимо весьма низкого зачастую качества параметров самой электрической сети, электронное оборудование, питающееся от сети переменного тока, подвергается негативным воздействиям разного рода помех со стороны этой питающей сети. А подобных помех в сети великое множество. Возникают они очень просто: включился холодильник — сработало пусковое реле его компрессора, а в момент включения он потребляет ток, в десятки раз превышающий тот, что указан в паспорте. На этот миг в питающей сети возникает «просадка» напряжения с последующим всплеском, то есть помеха.

Даже включение обычной лампочки в люстре приводит к возникновению помехи такого же характера, поскольку она в момент включения потребляет ток примерно в 10 раз больший номинального (пока спираль холодная). Это, кстати, главная причина их довольно частого перегорания. Для предотвращения обычно ставят специальные устройства, позволяющие ей медленно (около 5 секунд) разгореться.

Но самое неприятное то, что амплитуда (напряжение) выброса помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы «спалить» какое-либо чувствительное устройство. Это так называемые импульсные (или быстрые) помехи. Кроме них бывают еще помехи, представляющие медленно меняющееся напряжение, другими словами — это сравнительно медленное (как правило, секунды и доли секунды) изменение напряжения в сети.

Таким образом, к основным факторам питающей электросети, негативно воздействующим на электронную аппаратуру и вычислительную технику, можно отнести следующие:

1. Высоковольтные импульсные перенапряжения — грозовые, длительностью от долей до десятков микросекунд, и коммутационные, длительностью до десятков и сотен миллисекунд. Грозовые перенапряжения могут достигать десятков киловольт, коммутационные — единиц киловольт.

2. Повышения напряжения выше 110 % от номинала, кратковременные (несколько периодов сети) или длительные, вызванные неполадками в сети (например, перекосом фаз).

3. Кратковременные провалы (в течение нескольких периодов), вызванные подключением мощной нагрузки, и длительные понижения напряжения ниже 85 % от номинального значения.

4. Пропадание напряжения более чем на два полупериода частоты.

5. Радиочастотные шумы от воздействия мощных радиопередающих устройств и помехи от импульсных блоков питания.

6. Отклонение частоты питающей сети от номинала 50 Гц.

7. Гармонические искажения питающего напряжения (отклонение формы от синусоидальной).

Степень воздействия этих факторов питающей сети на аппаратуру различна. Возможны случаи сбоев в работе (импульсные помехи и провалы питающего напряжения), самопроизвольного отключения или перезапуска устройств и даже выход их из строя под действием импульсных помех или длительных перенапряжений.

В-третьих, традиционные электросети работают на более или менее линейную (активную) нагрузку, и в спектре тока основная мощность приходится на первую гармонику. В трехфазной сети с равномерно распределенной по фазам линейной нагрузкой в идеале через нейтральный провод ток практически не течет, поскольку токи от нагрузок всех трех фаз компенсируют друг друга. Учитывая это свойство, в четырехпроводных кабелях, широко применяемых в трехфазных сетях с глухозаземленной нейтралью, часто используют нейтральный провод существенно меньшего сечения, чем сечение фазных проводников. А электропитание компьютерного оборудования и имеет нюанс, обусловленный ярко выраженной динамической нелинейностью входной цепи используемых в них бестрансформаторных блоков питания. На самом деле в составе таких блоков питания имеются трансформаторы. Другое дело, что габариты и вес этих трансформаторов много меньше, чем у трансформаторов в блоках питания, работающих без преобразования частоты, то есть на частоте питающей сети — 50 Гц. При нелинейной симметричной нагрузке фаз при большом уровне третьей гармоники тока (что характерно для бестрансформаторных блоков питания) взаимной компенсации токов не происходит, и действующее значение тока в нулевом проводе оказывается даже больше, чем в каждом из фазных. Таким образом, при подключении большого числа компьютеров к традиционной четырехпроводной трехфазной сети происходит перегрузка нулевого провода. Эта перегрузка приводит к последствиям разной степени тяжести — от «набегания» помехи переменного тока на нулевом проводе до перегорания этого нулевого провода, который никогда не защищают от перегрузки, ведь все автоматы защиты ставятся только в фазных проводах. Такая ситуация наиболее вероятна в зданиях старой застройки, электропроводка которых рассчитывалась на преобладающее использование активной нагрузки (электроосвещение, калориферы и т. п.). В настоящее же время для питания электронной аппаратуры используют только бестрансформаторные блоки питания. При относительно более сложной схеме они имеют значительно меньший вес и габариты. Да что там электронная аппаратура! На смену привычным осветительным лампочкам накаливания пришли низковольтовые (12 В), питание которых осуществляется от сетевых адаптеров, имеющих в своем составе бестрансформаторный блок питания.

Внимание:Перегрузки нулевого провода подводящего силового кабеля можно избежать, установив в распределительном щите развязывающий трехфазный трансформатор 380/220 В. К этому трансформатору входное напряжение подводится по схеме «треугольника», а выходные обмотки соединяют по схеме «звезда» (рис. 1).



Рис. 1.Разводка питания и заземления


В-четвертых, кроме разного рода помех, «гуляющих» в промышленной сети и готовых ринуться в подключаемые электронные устройства, имеет место еще один негативный фактор. Ситуация усугубляется тем обстоятельством, что все находящиеся в настоящее время в эксплуатации компьютеры и подключаемые к ним периферийные устройства — импортного производства и рассчитаны на использование в трехпроводной сети электропитания: «фаза» — «нуль» — «земля». Это так называемая европейская электросеть, предполагающая использование для электрического соединения (разъединения) трехконтактных электровилок и, соответственно, трехконтактных электророзеток. Таким же образом запитываются разного рода устройства, служащие для улучшения параметров входного напряжения (промышленной электросети).

В России же жилые помещения, да и большинство рабочих помещений и кабинетов, до настоящего времени оборудовано по двухпроводной схеме. То есть на настенную электророзетку выведены фазный и нулевой провод, а «земляной» провод к ней не подведен. При этом значительная (порядка 30 %) экономия в электропроводах достигалась за счет повышенной вероятности поражения электротоком потребителя, а также выхода из строя используемой им современной дорогостоящей бытовой электронной техники.

Каков же «механизм» возникновения ситуации поражения пользователя электротоком?

Практически каждый блок питания компьютера или периферийного устройства имеет сетевой фильтр (рис. 2).



Рис. 2. Входные цепи блока питания


Конденсаторы этого фильтра предназначены для шунтирования высокочастотных помех питающей сети на «землю» через провод защитного заземления и соответствующую трехполюсную вилку и розетку. «Земляной» провод соединяют с контуром заземления, но допустимо его соединять и с «нулем» силовой сети. Разница ощущается только в особо тяжелых условиях эксплуатации. При занулении необходимо быть уверенным в том, что «нуль» не станет фазой, если кто-нибудь вдруг перевернет вилку питания. Если же «земляной» провод устройства никуда не подключать, на корпусе устройства появится напряжение порядка 110 В переменного тока (рис. 3).



Рис. 3.Образование потенциала на корпусе компьютера


Конденсаторы фильтра работают как емкостной делитель напряжения, и поскольку их емкость одинакова, 220 В делится пополам. Конечно, мощность этого «источника» ограничена — ток короткого замыкания на землю составляет от единиц до десятков миллиампер, причем, чем мощнее блок питания, тем больше емкость конденсаторов фильтра и, следовательно, ток:

Iкз = Uпит∙2∙FC,

где: Uпит — 220 В, F — 50 Гц — частота питающей сети, С — емкость конденсатора фильтра.

При емкости конденсатора С = 0,01 мкФ этот ток будет около 0,7 мА. Такое напряжение и ток уже опасны для человека. Попасть под напряжение можно, прикоснувшись одновременно к неокрашенным металлическим частям корпуса компьютера (например, к головкам крепежных винтов или металлическим деталям интерфейсных разъемов) и, например, к батарее отопления.

Кроме того, при отсутствии «земли» общая точка емкостей С1 и С2 «висит» в воздухе, что приводит, помимо вышеупомянутой опасности поражения электротоком, к созданию ими и высокочастотным дросселем (при наличии его в схеме фильтра) паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь дополнительным источником потенциальной опасности для пользователя, ну и, конечно же, для расположенной рядом электронной техники.