Художник нисколько не ошибся. Он изобразил заход молодого месяца в экваториальных странах. Там месяц может при заходе лежать именно так, как изображено на рисунке. Если вы были на Кавказе, вы заметили, вероятно, что молодой месяц там наклонен не так, как на севере. А под тропиками в некоторое время года он совсем ложится. Значит, художник не сделал ошибки, а нарисовал то, что действительно бывает.
Путешествие по островам (63)
Маршрут путешествия показан на рисунке. Так как на каждый остров и на берег ведет четное число мостов, то начать странствование можно из любого места.
Три острова (64)
Три пути от рыбачьих поселков к островам показаны на рисунке пунктирными линиями.
Что шире и что выше? (65)
На глаз кажется, что левая фигура шире и ниже, чем правая. Проверив бумажкой, вы убедитесь, что глаза обманули вас: обе фигуры одинаковы и по ширине, и по длине. Это обман зрения.
Много ли рыбы? (69)
Помогу читателю разыскать добычу удильщика. Одна рыбина покоится головой вниз на спине рыболова. Вторая поместилась между его головой и руками, держащими удилище. Третья расположилась под его ногами.
Фигурки-головоломки (70)
Посмотрите дальше, как складываются фигурки, изображенные
Юный сторож (71)
Не умел считать крестьянин. Степка же сосчитал правильно. В самом деле: за 1-й час Степке причитался 1 орех, за 2-й – 2, за 3-й – 4, за 4-й – 8, за 5-й – 16, за 6-й – 32, за 7-й – 64, за 8-й – 128, за 9-й – 256, за 10-й – 512. Пока все вместе составляет немного больше тысячи орехов. Но будем продолжать подсчет: за 11-й час Степке следовало 1024 ореха, за 12-й – 2048, за 13-й – 4096, за 14-й – 8192, за 15-й – 16 384. Числа получаются изрядные; но какие же тут тысячи тачек? Однако: за 16-й час причитается 32 768 за 17-й час причитается 65 536 за 18-й час причитается 131 072 за 19-й час причитается 262 144 за 20-й час причитается 524 288
Все вместе составляет уже больше миллиона орехов! Но сутки не кончены – остается еще 4 часа.
За 21-й час причитается 1 048 576 за 22-й час причитается 2 097 152 за 23-й час причитается 4 194 304 за 24-й час причитается 8 388 603
А если сложить все 24 часа вместе, то составится 16 777 215 – почти 17 миллионов орехов. Это и будет та тысяча тачек, о которой говорил Степка.
Как получить 20? (73)
Вот как это надо сделать (зачеркнутые цифры заменены нулями):
011
000
009
Действительно: 11 + 9 = 20.
Из семи цифр (74)
Задача имеет не одно, а три разных решения. Вот они:
123 + 4 – 5 – 67 = 55;
1-2-3-4 + 56 + 7 = 55;
12 – 3 + 45 – 6 + 7 = 55.
Пятью единицами (75)
Написать число 100 пятью единицами очень просто:
111 – 11 = 100.
Пятью пятерками (76)
5× 5 × 5 – (5 × 5).
Это равно 100, потому что 125 – 25 = 100.
Пятью тройками (77)
33 × З + = 100
Пятью двойками (78)
22 + 2 + 2 + 2 = 28.
Четырьмя двойками (79)
= 111
Четырьмя тройками (80)
Мы привели здесь решения только до 6. Остальные придумайте сами. Да и указанные решения можно составить и другими комбинациями троек.
Четырьмя четверками (81)
Который год? (82)
Будет только один такой год в XX веке: 1961-й.
В зеркале (83)
Единственные цифры, которые не искажаются в зеркале, – это 1, 0 и 8. Значит, искомый год может содержать в себе только такие цифры. Кроме того, мы знаем, что это один из годов XIX века, т. е. что первые его две цифры 18.
Легко сообразить теперь, какой это год: 1818-й. В зеркале 1818 год превратится в 8181-й: это ровно в 4½ раза больше, чем 1818:
1818 × 4½ = 8181.
Других решений задача не имеет.
Какие числа? (84)
Ответ прост: 1 и 7. Других таких чисел нет.
Сложить и перемножить (85)
Таких чисел сколько угодно:
3× 1 = 3; 3 + 1 = 4;
10 × 1 = 10; 10 + 1=11
и вообще всякая пара целых чисел, из которых одно – единица.
Это потому, что от прибавления единицы число увеличивается, а от умножения на единицу остается без перемены.
Столько же (86)
Числа эти 2 и 2. Других целых чисел с такими свойствами нет.
Три числа (87)
1, 2 и 3 дают при перемножении и при сложении одно и то же:
1 + 2 + 3 = 6; 1 × 2 × 3 = 6.
Умножение и деление (88)
Таких чисел очень много. Например:
2: 1 = 2; 2 × 1 = 2;
7: 1 = 7; 7 × 1 = 7;
43: 1 = 43; 43 × 1 = 43.
Вдесятеро больше (89)
Вот еще четыре пары таких чисел:
11 и 110; 14 и 35; 15 и 30; 20 и 20.
В самом деле:
11 × 110 = 1210; 15 × 30 = 450;
11 + 110 = 121; 15 + 30 = 45;
14 × 35 = 490; 20 × 20 = 400;
14 + 35 = 49; 20 + 20 = 40.
Других решений задача не имеет. Довольно хлопотливо разыскивать решения вслепую. Знание начатков алгебры значительно облегчает дело и дает возможность не только отыскать все решения, но и удостовериться, что больше пяти решений задача не имеет.
На что он множил? (90)
Рассуждаем так. Цифра 6 получилась от сложения колонки из двух цифр, из которых нижняя может быть либо 0, либо 5. Но если нижняя 0, то верхняя 6. А может ли верхняя цифра быть 6? Пробуем: оказывается, чему бы ни равнялась вторая цифра множителя, никак не получается 6 на предпоследнем месте первого частного произведения. Значит, нижняя цифра предпоследней колонки должна быть 5; тогда над ней стоит 1.
Теперь легко восстановить часть стертых цифр:
Последняя цифра множителя должна быть больше 4, иначе первое частное произведение не будет состоять из четырех цифр. Это не может быть цифра 5 (не получается 1 на предпоследнем месте). Пробуем 6 – годится. Имеем:
Рассуждая далее подобным же образом, находим, что множитель – 96.
Пять пятниц (91)
Пять пятниц может быть в феврале високосного года (т. е. когда февраль имеет 29 дней). А именно если первая пятница будет 1 февраля, то
8 февраля………………… вторая пятница,
15 февраля………………. третья пятница,
22 февраля………………. четвертая пятница,
29 февраля………………. пятая пятница.
Итого в течение этого короткого месяца будет пять пятниц.
Сестры и братья (92)
Всех семеро: четыре брата и три сестры. У каждого брата три брата и три сестры; у каждой сестры четыре брата и две сестры.
Сколько детей? (93)
Всех детей семь: шесть сыновей и одна дочь. (Обычно же отвечают, что детей двенадцать; но тогда у каждого сына было бы шесть сестер, а не одна.)
Завтрак (94)
Дело объясняется очень просто. Село за стол не четверо, а только трое: дед, его сын и внук. Дед и сын – отцы, а сын и внук – сыновья.
Сколько им лет? (95)
Рассчитать, сколько лет каждому, нетрудно. Ясно, что сын старше внука в 7 раз, а дед – в 12 раз. Если бы внуку был 1 год, сыну было бы 7 лет, деду – 12 лет, а всем троим вместе 20 лет. Это ровно в 5 раз меньше, чем на самом деле. Значит, в действительности внуку 5 лет, сыну 35 и деду 60.
Проверим: 5 + 35 + 60 = 100.
Землекопы (96)
На удочку этой задачи легко попасться: можно думать, что если 5 землекопов в 5 часов вырыли 5 метров канавы, то для выкопки в 100 часов 100 метров понадобится 100 человек. Однако это совершенно неправильное рассуждение: понадобятся те же 5 землекопов, не больше.
В самом деле: 5 землекопов в 5 часов выкапывают 5 метров; значит, 5 землекопов в 1 час вырыли бы 1 метр, а в 100 часов – 100 метров.
Сколько партий? (97)
Обычно отвечают, что каждый играл по одному разу, не соображая, что трое (и вообще нечетное число) игроков никак не могут играть каждый только по одному разу. С кем же тогда играл третий игрок? В каждой партии должны ведь участвовать два партнера. Если играли А, В и С и сыграно было три партии, то это значит, что играли
Легко видеть, что каждый играл не по одному разу, а по два:
Итак, правильный ответ на головоломку таков: каждый из троих играл по два раза, хотя сыграно было всего три партии.
Кто старше? (98)
Ни тот, ни другая не старше: они близнецы, каждому из них в данное время по 6 лет.
Возраст находят простым расчетом: через 2 года мальчик будет на 4 года старше, чем 2 года назад, и притом вдвое старше; значит, 4 года – это возраст его 2 года назад, и, следовательно, сейчас ему 4 + 2 = 6 лет.
Таков же и возраст девочки.
Улитка (99)
Через 10 суток и 1 день. В первые 10 суток улитка поднимется на 10 метров, по 1 метру в сутки; в течение же одного следующего дня она всползет еще на 5 метров, т. е. достигнет верхушки дерева. (Обыкновенно неправильно отвечают: «Через 15 суток».)
Пильщики дров (100)
Часто отвечают: в 1½ × 5, т. е. в 7½ минуты. При этом забывают, что последний разрез даст два метровых отрубка. Значит, распиливать 5-метровое бревно поперек придется не 5, а 4 раза; на это уйдет всего 1½ × 4 = 6 минут.
В город (101)
Колхозник ничего не выгадал, а потерял. На вторую половину дороги он употребил столько времени, сколько отняло бы у него все путешествие в город пешком. Значит, он выгадать во времени не может, а должен потерять.