Горные потоки и бассейны на Марсе — страница 2 из 5

Космические аппараты, доставленные в последней четверти XX века на поверхность Марса и на орбиты его спутников, показали, что климат планеты действительно очень сухой и холодный, а очевидных признаков воды нет. Постепенно стало ясно, что полярные шапки содержат много воды, но, по-видимому, далеко не всю. Вместе с тем на крупномасштабных снимках поверхности было обнаружено заметное число странных образований, очень похожих на долины земных пересохших рек. Одна из типичных протяжённых долин, сходство которой с широким руслом пересохшей реки не вызывает сомнений, — долина Нанеди в Земле Ксанфа, с координатами 5,1°N и 48,3°W (рис. 6). Размеры представленного здесь участка 28х10 км. По-видимому, именно вода оставила русло шириной около 2,5 км. Оно образовалось более миллиарда лет назад. Благодаря высокому разрешению справа на снимке можно увидеть следы более поздних узких потоков на дне долины — климат Марса меняется медленно. Этот снимок, полученный уже в наши дни с аппарата США «Mars Global Surveyor» (MGS), относится к наилучшим иллюстрациям следов древней гидрологии Марса. Эпоха ещё больших открытых водоёмов на Марсе относится к ранним периодам истории планеты (более 2 млрд лет назад).






Рис. 6. Долина Нанеди — одно из многочисленных геологических свидетельств богатой водой древней истории Марса. (NASA/MSSS/ Release МОС2-73 Nanedi.)






Рис. 7. Долина Ниргал — одна из наиболее известных долин древних марсианских рек (29,4°S, 39,1°W). На врезке — современный снимок участка дна этого древнего русла. Размер выделенного фрагмента 3х6,5 км. (MGS МОС Release No. МОС2-254. NASA/JPL/MSSS.)


Водно-эрозионные следы на Марсе весьма многочисленны. Следы воздействия воды и её потоков носят многие детали рельефа Марса. На рис. 7 показан снимок долины Ниргал, которая также относится к классическим водно-эрозионным образованиям. Долина Ниргал была обнаружена по снимкам, сделанным с аппарата «Маринер-9», а врезка на рис. 7 представляет современный снимок аппаратом MGS. Сухое ныне узкое русло среди песчаных дюн на дне долины отражает более поздние времена гидрологической истории поверхности Марса. В эпоху полноводных древних рек давление атмосферы было намного выше и, вероятно, сопутствовало значительному парниковому эффекту. Но по мере прогрессирующего похолодания водоёмов оставалось всё меньше. Их постепенное обмеление и пересыхание иллюстрирует рис. 8, где представлен район 500х600 км с центром у координат 35°S, 177°W. Изучение особенностей рельефа показало, что в северной части планеты, возможно, существовал океан, который покрывал около 35 % поверхности планеты (рис. 9). Это предположение разделяют не все специалисты; многие утверждают, что после него должны были остаться карбонаты (соли угольной кислоты), которых на Марсе мало. Аппарат «Марс Экспресс» проводил минералогическое картирование значительной части планеты. При большом разнообразии минерального состава карбонаты, широко распространённые на Земле, всё же не найдены. Это важный результат, поскольку на нашей планете именно в их залежах сосредоточено основное количество углерода. Больше того, «Марс Экспресс» не подтвердил наличия больших запасов углекислоты (прежде всего в виде льда СО2), достаточных при возвращении в атмосферу для существенных изменений массы атмосферы планеты, которые привели бы к изменению климата планеты из-за парникового эффекта. Этот результат входит в противоречие с постоянно упоминаемой в литературе гипотезой о тёплой эпохе раннего Марса, когда возникновение жизни, как предполагается, было возможно. Не исключено, однако, что образованию карбонатов могла мешать повышенная кислотность воды.





Рис. 8. Моделирование процесса постепенного обмеления и пересыхания водоёмов на Марсе в первые миллиарды лет его истории. Район 35°S, 177°W, 500х600 км. Фрагмент 1 соответствует древнему тёплому климату, фрагмент 6 — современным условиям. Из работы Pablo, Marquez & Centeno.


Предположение, что теперь главные водные запасы Марса сконцентрированы в подпочвенной мерзлоте, куда ушла почти вся вода с его поверхности, быстро завоевало популярность. Процесс похолодания на планете был длительным и растянулся на многие сотни миллионов лет. В наши дни лишь в экваториальных районах в летний полдень температура тонкого верхнего слоя грунта может стать положительной. Однако на долю водяного пара приходится ничтожная доля атмосферного давления Марса, около 1/10 000. Реальные значения давления атмосферы у поверхности Марса, с его большими перепадами высот, лежат в широких пределах. Давление составляет всего 0,6 мбар на вершинах гигантских древних вулканов области Фарсида высотой до 24 км; 9 мбар в глубоких, до 4 км, частях каньона Кондор (Долины Маринера) и 10 мбар на дне глубокой впадины Эллада. Там открытая водная поверхность могла бы сохраняться вплоть до замерзания. Вода вполне может какое-то время присутствовать в жидком виде в некоторых районах и на поверхности Марса. Другое дело, что запасы воды на Марсе весьма ограниченны.





Рис. 9. Гипотетический океан Марса располагался в северном полушарии и содержал до 60 млн км3 воды. Белое пятно выше центра рисунка — современное положение северной полярной шапки. Предполагается, что исчезновению океана сопутствовало изменение положения полюсов и наклона полярной оси планеты. Из работы Perron.






Рис. 10. Осыпи грунта и нитевидные овраги (показаны стрелками) на склоне кратера (42.4°S, 158,2°W). Овраги похожи на следы земных горных рек, но, в отличие от земных оврагов, они не расширяются, а сужаются вниз по склону. (MGS МОС Release No. МОС2-320. NASA/JPL/MSSS.)


ОСЫПИ И УЗКИЕ ОВРАГИ НА СКЛОНАХ


Следы сползаний и осыпей грунта на склонах кратеров и каньонов были замечены уже на первых снимках поверхности Марса. Камеры, установленные на аппарате MGS и других современных аппаратах, обладают весьма высоким разрешением — до единиц метров. На прежних аппаратах разрешение было в тысячу раз хуже. Именно снимки с высоким разрешением позволили выделить новые классы объектов, особенно интересных для понимания как климатических изменений, так и современной гидрологии Марса.






Рис. 11. Ручьи и следы камнепадов на склонах земных гор. Сели и горные реки оставляют следы, которые расширяются вниз по склону.


Перемещение больших масс грунта, вероятно песка, пыли и камней, по склону, происходящее в современную эпоху, иллюстрирует рис. 10. В нижней части снимка видны размытые валы осыпавшегося материала шириной около 3 км. Валы сыпучего материала огибают остатки прежнего рельефа, оставляя обнажённый склон. Такие же осыпи можно видеть и в других районах Марса; они известны со времён миссии «Викинга». Но значительно улучшенное разрешение фотокамер на новых космических аппаратах позволило обнаружить удивительные следы на склонах марсианских кратеров. Нельзя сказать, что образований, подозрительных в отношении наличия жидкой воды, раньше не замечали совсем. Но твёрдо установленная сухость и морозность марсианского климата заставляла исследователей искать ей альтернативу. Вначале предполагалось, что небольшие, но свежие изменения рельефа планеты объясняются большими осыпями мелкого песка и камнепадами на склонах глубоких долин и кратеров. Так возникли очень широкие и протяжённые овраги. Труднее было объяснить недавнее возникновение оврагов поменьше, да ещё и со следами каких-то потоков.

На рис. 10, наряду с осыпями сыпучего материала, можно видеть такие необычные образования. Это тонкие нитевидные километровые овраги или борозды, спускающиеся по склону (показаны стрелками). Их ширина в узкой части составляет всего от единиц до десятков метров. Овраги очень похожи на промоины земных горных рек или ручьёв, но в отличие от земных оврагов они не расширяются, а сужаются вниз по склону. Среда, которая их создавала, либо куда-то исчезла на полпути, либо чем-то тормозилась в своём движении. Потоки в земных горных реках обычно расширяются вниз по склону. Для Земли это естественно. Так же ведут себя камнепады (сели), оставляя расширяющиеся следы (рис. 11). Сужающиеся марсианские овраги не могли возникнуть под действием камнепада или крупномасштабного селя. Тем более они не могли образоваться под действием пылевых оползней, которые, как можно видеть внизу на рис. 10, бесследно засыпают все овраги. С орбитальных аппаратов продолжали поступать всё новые снимки странных объектов. В возникшей (и всё ещё продолжающейся) дискуссии многие авторы стараются избегать в своих работах даже упоминания «священной коровы», простите — источников грунтовой воды, как среды, сформировавшей овраги, промоины и другие образования такого рода на Марсе. Видеть «голого короля» оппоненты не хотят. Какие только варианты не предлагались. Например, популярной стала гипотеза, что именно CO2 в чистой форме или в виде клатратов может быть той жидкостью, потоки которой формируют овраги и протоки на склонах Марса. Или жидкий метан. Или что-то ещё. Гипотеза струящегося песка тоже имела (и имеет) много сторонников; кстати, сухой мелкий песок действительно растекается, как вода.

Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все её аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный СО2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах… Таким образом, мы заключаем, что овраги не могут быть образованы (жидким. — Л. К.) СО2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».





Рис. 12. Одиночные ключи грунтовых вод выходят на склоны. Потоки замерзают на ложе из морозного грунта, пройдя несколько сотен метров.