ам контура можно заметить в левой части снимка. Источников жидкости, пополняющих бассейн, видно несколько. Вероятно, главный источник находится справа над чашей. Это вытянутое образование с шестью направленными вниз отростками, и, по-видимому, вдоль них стекает вода. Более мелкие структуры того же типа видны слева над бассейном и, вероятно, связаны с наиболее широким протоком вдоль склона. Форма промоин на рис. 18, соответствующая крутому склону, указывает, что поток несёт с собой значительное количество грунта. Горизонтальная ось снимка — около 1500 м. Длина бассейна — около 600 м, а площадь — около 0,3 км2. Никакие песчаные запруды на Марсе не смогли бы удержать столь большие массы воды, даже с учётом втрое более низкой силы тяжести на планете. Но если грунт очень холодный, поступающая вода, впитываясь в морозный грунт, способна быстро создать запруды, чаши из льда и промёрзшего грунта, обладающие определённой прочностью. По существу, это тот же механизм, о котором говорилось выше и который объясняет сужение протоков вдоль склона.
Возраст образований, показанных на рис. 18, не может быть большим. Вполне вероятно, что источники и бассейн действуют в наши дни. На это указывают чистая, насколько можно судить по снимку (без отложений пыли), кромка бассейна, примыкающий к нему второй контур и чёткие нитевидные протоки на склонах. Протоки имеют разветвляющуюся форму, но направлены вверх, а не вниз по склону. Это свойство склоновых оврагов на Марсе уже рассматривалось выше; оно связано с быстрым вымерзанием потока и с частичным просачиванием воды в сухой песчаный грунт. Ветвящиеся отростки представляют собой не притоки, а оттоки от основного русла.
Интересно оценить возраст нитевидных оврагов; он тоже очень большим быть не может хотя бы из-за массивных обрушений песка, которые хорошо видны внизу рис. 10 и которые неминуемо засыпали бы старые овраги. Разрушение оврагов происходит и под действием постоянной ветровой эрозии.
Рис. 19. Протяжённость следа потока на склоне достигает 6 км. Для земных грунтов потемнение соответствует увлажнению. Можно предположить, что тёмный след относится к более позднему источнику. (MGS МОС m0807686b. NASA/JPL/MSSS.)
Хорошую возможность оценить возраст источников предоставляют рис. 19–21. На рис. 19 полная протяжённость расположенного на склоне следа потока достигает 6 км. Можно предположить, что более тёмный оттенок соответствует увлажнению; во всяком случае, тёмный оттенок характерен для земных увлажнённых грунтов. Источников на снимке два, на расстоянии примерно 150 м один от другого. Каждый из них, в пределах разрешения снимка, — «точечный». Дебет каждого из источников должен быть достаточно большим, чтобы оставить столь протяжённый след или создать глубокие овраги. На снимке видно, что следы имеют разную плотность; более плотный и узкий возникает ниже и проходит вдоль менее плотного, но более широкого следа. Напрашивается вывод, что плотный след — более поздний и что он возник, когда верхний источник уже иссяк. Можно заметить, что след на рис. 19 отличается от рис. 10 и 12 тем, что глубокого оврага (промоины) здесь, по-видимому, нет. Возможно, это молодой источник, а промоина формируется, как и в случае земных горных рек, за длительное время.
Можно очень приближённо рассчитать объём вытекшей воды, который для пейзажа на рис. 19 составил не менее 300 м3. Расчёт осложняется тем обстоятельством, что продолжительность работы отдельного источника неизвестна, а глубина промёрзшего ложа должна постепенно нарастать за счёт теплообмена с потоком. Поэтому оценка (300 м3) опирается главным образом на проделанный несложный модельный эксперимент и может быть очень неточной. На возможную связь плотности (оттенка) следа с его возрастом указывает и рис. 20. Наряду с длинным правильной формы следом, возникающим, как и на рис. 19, из «точечного» источника на верхней кромке вала, на склоне видны многочисленные малоконтрастные полосы той же природы — по-видимому, следы пересохших потоков. Интересные образования видны в левой части снимка: два коротких тёмных потока снова возникли у начала светлых (более старых) образований. Таким образом, источники многократно возникают на тех же самых местах.
В некоторых случаях тёмные потоки возникают вблизи верхушки изолированного холма, как на рис. 21, где возвышающаяся гора украшена многочисленными радиально направленными следами потоков разного возраста, в том числе и возникающими повторно. Вероятно, это один из лучших примеров быстрого таяния значительной изолированной массы подпочвенного льда или даже целой ледяной горы.
Как долго могут сохраняться покрытые реголитом ледяные поверхности, всё ещё неясно. Какой-то ответ могут дать бассейны, подобные показанному на рис. 18. С одной стороны, слои пыли настолько хорошо изолируют грунтовый лёд, что он может сохраняться почти неограниченно долго, с другой — имеется эндогенное (внутреннее) тепло недр, которое всё-таки постепенно лёд выплавляет. Количество выделяемого тепла в разных районах различно, так как распределение в коре планеты радиоактивных элементов — урана, тория и калия-40, распад которых создаёт значительную его часть, неравномерно.
Рис. 20. Наряду со следами свежих и старых потоков два коротких тёмных потока снова возникли у начала светлых (более старых) образований. (MGS МОС m1103547. NASA/JPL/MSSS.)
Рис. 21. Возвышенность, из под поверхности которой радиально отходят следы потоков разного возраста. (MGS МОС m0204672. NASA/JPL/MSSS.)
Рис. 22. На горном склоне в природном заповеднике Памуккале (Турция) вода термальных источников минерализуется, образуя заполненные водой чаши. Фото автора.
Рис. 23. Чаши и бассейны образуют изрезанные границы плато. Фото автора.
У марсианских бассейнов есть аналоги на Земле, особые природные образования, которые потоки порой образуют на земных горных склонах. На рис. 22 и 23 показаны такие удивительные структуры в природном заповеднике Памуккале (Турция). Здесь тёплая вода многочисленных термальных источников на горном склоне (рис. 22а), обогащённая кальциевыми гидросолями, минерализуется и создаёт расположенные каскадом чаши, заполненные водой (рис. 22b и рис. 23). Масштаб чаш иллюстрирует рис. 22с. Постепенно вода отступает (рис. 23а), образуя горизонтальные кромки на поверхности чаш. Когда источник иссякает, исчезает и вода в чашах (рис. 23Ь). Пустые чаши окаймляют плато изрезанной белой цепью (рис. 23с).
Пока никаких указаний на минеральные источники на Марсе нет. Но чаши Памуккале — это прямая морфологическая аналогия с гораздо большим бассейном изрезанной формы на рис. 18. Внешняя граница бассейна, похожая на края чаши Памуккале на рис. 23а, выделяется светлой окантовкой, вероятно, ледяной кромкой.
Рис. 24. Бассейн на дне небольшого кратера, расположенного внутри кратера Ньютона. Размер видимой части бассейна достигает 3,4 км. (MGS МОС Release No. МОС2-242. NASA/JPL/MSSS.)
Ещё один такой же бассейн, но значительно больших размеров, можно видеть на рис. 24. Он находится на дне небольшого кратера (центр 41°S, 160°W), расположенного внутри кратера Ньютон. Горизонтальная ось снимка составляет 7 км, а размер видимого участка бассейна достигает 3,4 км. На крутом склоне видны многочисленные нитевидные следы потоков, возникающих в стенке вала кратера на глубине примерно 0,5 км под уровнем поверхности. Потоки состоят, по-видимому, из воды и полужидкого грунта. В отличие от рис. 13, следы здесь прямые, что, наверное, указывает на большую крутизну склона. Наиболее широкий проток расположен правее центра, под нависающим «языком», который, возможно, состоит из льда. Дно кратера выглядит затуманенным; не исключено, что это действительно испарения над открытой частью водной поверхности бассейна. Поверхность бассейна не такая гладкая, как на рис. 18. Связано ли это с возрастом бассейна, неизвестно. Судя по его площади, составляющей несколько квадратных километров, приток жидкости здесь значительно превышает её приток к бассейну на рис. 18.
Рис. 25. Ледяная линза на дне 35 километрового кратера, расположенного в полярной зоне. Вал кратера круглый год защищает лёд от прямых солнечных лучей. Фото ESA, 2005 год.
На снимках поверхность бассейнов по цвету не отличается от окружающего рельефа, поэтому предполагается, что вся ледяная поверхность покрыта песком и пылью. Но есть одно исключение. В 70° к северу от экватора, на дне 35-километрового кратера, находится ледяное озеро диаметром 10 км и глубиной до 200 м (рис. 25). Вал кратера высотой около 300 м круглый год надёжно заслоняет лёд от прямых солнечных лучей. Только вот почему он здесь чист от пыли?
Возраст бассейнов не с может быть большим. Если бы ключи на склонах действовали постоянно, вместо чаш или бассейнов наблюдалось бы ровное дно кратера, покрытое твёрдой (или жидкой) средой. По-видимому, снимки указывают на современные явления, которые возникают, развиваются и исчезают, хотя повторное появление следов на тех же местах может быть доказательством устойчивых и длительных процессов.
ЗАКЛЮЧЕНИЕ
Можно отметить интересное совпадение. Более 20 лет назад было высказано предположение, что марсианские полюса однажды переместились так, что льды прежних полярных шапок оказались на экваторе, где сохранились под слоями грунта и отложениями вулканического пепла. Почти все обнаруженные следы текущей воды сосредоточены в восточной части Равнины Амазония и в восточной части Земли Аравия — диаметрально противоположных экваториальных районах Марса. Вместе с тем вид поверхности в другом районе, где работал аппарат «Опортьюнити», по мнению многих специалистов, свидетельствует об осадочных процессах в древнем водохранилище (рис. 26), что возвращает нас к нерешённому вопросу об эволюции климата древнего Марса и странному отсутствию следов жизни на нём. Но об этом надо говорить отдельно.