Холодильник Эйнштейна — страница 20 из 65

Может, кинетическая теория неверна, как и подозревал Максвелл? Существующие данные были слишком фрагментарны и неубедительны. В одном из писем Максвелл явно показал, что привязался к изучаемой теории: “Она мне полюбилась, и мне нужно осадить себя экспериментами”.

Он решил, что остается лишь одно — разработать и провести опыт по измерению вязкости газа при изменении его давления. Однако не успел он к нему приступить, как в дело вмешались обстоятельства.

Всего через несколько месяцев после публикации статьи Максвелл лишился работы. Хотя Абердин невелик, в городе было два университета — Маришаль и Кингс. Когда в 1860 году городские власти решили объединить их ради сокращения расходов, они постановили, что новое учебное заведение не может содержать двух профессоров натурфилософии. К несчастью для Максвелла, его коллега из Кингс-колледжа Дэвид Томсон, двухметровый гигант, властный характер которого прекрасно соответствовал его внешности, был главным идеологом слияния. Кроме того, Максвелл был моложе него. По этим причинам уволили в итоге именно Максвелла.

На этом несчастья не закончились. Осенью 1860 года во время визита в семейное имение Гленлэр на юго-западе Шотландии Максвелл заразился оспой. Целый месяц он боролся с ужасной болезнью, которая убивала троих из десяти больных. К счастью для физики, Джеймс выжил. Позже он говорил друзьям, что жизнь ему спасла Кэтрин, которая ночь за ночью проводила у его постели. В последующие годы, когда Кэтрин подолгу болела, Джеймс никогда не уклонялся от своего долга ухаживать за ней.

В октябре 1860 года Максвеллы переехали в Лондон. Джеймс получил должность профессора прикладных наук в одном из новейших университетов Великобритании, Королевском колледже Лондона, основанном в 1829 году. Они с Кэтрин поселились в блокированном доме[12] в лондонском районе Кенсингтон недалеко от Гайд-парка.

Там Максвелл вернулся к вопросу, который изучал в Абердине. Хотя Кэтрин Максвелл не проявляла особого интереса к математическим аспектам работы мужа, к началу 1860-х годов она увлеклась экспериментальной физикой и приобрела в ней некоторые навыки. Вместе Максвеллы устроили в мансарде кенсингтонского дома лабораторию, где среди прочего занялись доказательством кинетической теории теплоты путем проверки предположения Максвелла, что вязкость газа не зависит от его давления.

Для этого Максвеллы собрали любопытный, но простой аппарат, изображенный на иллюстрации. По сути, он представлял собой 120-сантиметровую тонкую полую латунную трубку, закрепленную в верхней части стеклянного баллона. Внутри баллона на проводах, идущих с верхушки латунной трубки, параллельно земле были подвешены семь тонких металлических дисков, три из которых двигались, а четыре оставались в фиксированном положении. Поднося магниты к нижней части стеклянного баллона, Максвеллы заставляли подвижные диски поворачиваться из стороны в сторону. Они заполняли весь аппарат, включая латунную трубку и стеклянный баллон, воздухом, давление которого измерялось с помощью датчиков, прикрепленных к латунной трубке.



Аппарат Максвелла для измерения вязкости газов




Раскручивая диски магнитами, Максвеллы позволяли им свободно колебаться. Далее они измеряли, сколько времени занимает один поворот, или колебание, дисков при разном давлении воздуха. Если бы математические расчеты Максвелла были верны, то диски должны были бы колебаться с одинаковой скоростью при любом давлении.

Максвеллы придумали хитрый способ измерения скорости колебания дисков. Они прикрепили зеркало к проводам, на которых висели диски, и направили на это зеркало луч света. Когда диски колебались из стороны в сторону, колебалось и зеркало. В результате луч света, отражающийся от него, двигался по листу разлинованной бумаги, прикрепленному к стене примерно в двух метрах от аппарата. Увеличенные таким образом, легкие колебания зеркала измерялись с высокой точностью.

На протяжении нескольких месяцев Максвеллы проводили измерения в своей кенсингтонской мансарде. Использовать аппарат было нелегко. Им нужно было не только определять давление воздуха и скрупулезно считать колебания дисков, но и поддерживать постоянную температуру газа внутри аппарата, для чего приходилось часами топить огромный камин даже в жаркие летние месяцы.

Полученные наконец результаты стали триумфом математики Максвелла и кинетической теории. Измерения показали, что в широком диапазоне показателей давления воздуха — от крайне низкого, соответствующего 15 мм ртутного столба, до высокого, равного 760 мм ртутного столба, — диски колебались с одинаковой скоростью. Вязкость воздуха оставалась неизменной при любом давлении.

Экспериментально доказав предположение, которое можно было сделать лишь на основании кинетической теории, Максвелл дал человечеству состоятельное объяснение природы теплоты и позволил понять, почему ощущаются тепло и холод. Благодаря кинетической теории теплоты мы можем представить, что происходит в окружающем мире на неразличимом глазом уровне: в частности, понять, что все вокруг состоит из крошечных частиц, пребывающих в постоянном движении, а ощущение тепла и холода определяется тем, как мы — на макроскопическом уровне — воспринимаем это движение.

Хотя сегодня Максвелл славится прежде всего своими трудами об электричестве и магнетизме, в 1860-х годах современники прекрасно знали о его статьях по кинетической теории. Когда не кто иной, как Майкл Фарадей, заметил Максвелла в толкучке после публичной лекции в Королевском институте, он сравнил людей в толпе со сталкивающимися друг с другом частицами газа, сказав: “Эй, Максвелл, никак не выйдете? Если кто-то и может найти дорогу в толпе, так это вы”.

И все же, несмотря на впечатляющее объяснение природы теплоты, кинетическая теория имела один серьезный недостаток. Она не объясняла, почему теплота самопроизвольно переходит от горячих тел к холодным. Это открытие стало одним из великих достижений науки начала XIX века и уже считалось универсальным законом природы, а именно вторым началом термодинамики. Но ничто из сказанного Максвеллом о кинетической теории не проливало свет на то, почему это так.

Несколько удивительно, что Максвелл не сопоставил факты и не расширил свой статистический анализ, чтобы объяснить второе начало термодинамики. В конце концов, он впервые применил статистику в физике и вместе с Кэтрин провел важнейший эксперимент, доказавший состоятельность такого подхода. Из его сочинений понятно, что интуиция подсказывала ему, что существует какая-то связь между вторым началом и статистикой[13]. Но его внимание переключилось с теории газов и термодинамики на электромагнетизм. Бо́льшую часть 1860-х годов он направлял свою интеллектуальную энергию на изучение этого предмета и наконец опубликовал прорывной математический анализ электромагнетизма в 1873 году. В своей статье Максвелл не только описал все электромагнитные явления, но и раскрыл истинную природу света, проложил дорогу к изобретению радио и вдохновил Эйнштейна на создание теории относительности.

Кроме того, в 1871 году Максвелл был назначен первым руководителем новой физической лаборатории Кембриджского университета — Кавендишской лаборатории. Отныне он посвятил себя преподаванию. В этой лаборатории следующие пять поколений ученых открыли электрон и нейтрон, расщепили атом и изучили строение ДНК. Максвелл с энтузиазмом взялся за организацию лаборатории: он руководил и постройкой здания, и формированием необходимого инструментария. Затем, к несчастью, его поразил рак брюшины, который ранее убил его мать. Максвелл умер в 1879 году в возрасте 48 лет. Кэтрин осталась в имении на юго-западе Шотландии, где прожила в безвестности еще семь лет, до самой своей смерти.

К началу 1860-х годов кинетическая теория получила широкое признание. Однако второе начало термодинамики было по-прежнему окутано тайной. Физики могли сказать, почему чашка чая кажется горячей, но были не в состоянии объяснить, почему она остывает, если предоставить ее самой себе.

Глава 10


Подсчет способов

Математика — это язык.

Джозайя Уиллард Гиббс


Стаккато первых аккордов “Героической” симфонии Бетховена напоминало артиллерийский обстрел — казалось, они рикошетом отлетают от стен зала Венской филармонии. Было лето 1866 года, и среди зрителей сидел 22-летний Людвиг Больцман. Ниже среднего ростом, бородатый, в очках, с копной кудрявых темных волос, он был аспирантом на кафедре физики Венского университета. Одаренный с детства пианист, Больцман видел, как Бетховен схватил западную классическую музыку за шкирку и потащил в совершенно новом направлении. Но тогда он еще не знал, что в последующие четыре десятилетия своей карьеры, напоминающие “Героическую” симфонию множеством перемен тональности и темпа, он сделает то же самое для физики.

Одновременно другой человек с другого континента, Джозайя Уиллард Гиббс, начнет не менее важное изучение загадок термодинамики, которое растянется на всю его жизнь. В 1866 году, пока Больцман поглощал венскую культуру и писал диссертацию, 27-летний Гиббс на пароходе пересекал Атлантику, двигаясь на восток из Америки в Европу, чтобы начать трехлетнее путешествие по крупным европейским городам. Это была первая и единственная поездка Гиббса за пределы родной Новой Англии. Посещая в Европе лекции по естествознанию и математике, он изучал всевозможные методики, необходимые для последующей работы по исследованию энергии и энтропии.

Хотя научные интересы Гиббса и Больцмана пересекались, во всех остальных отношениях они были полной противоположностью друг друга. Худой Гиббс вел замкнутую жизнь аскета, а полный Больцман был общителен, пылок и подвержен перепадам настроения, из-за которых на смену его радостному возбуждению нередко приходило отчаяние. Если жизнь австрийца характеризует “Героическая” симфония Бетховена, то жизнь американца скорее напоминает одно из сдержанных музыкальных размышлений Эрика Сати. Хотя оба ученых отталкивались от начал термодинамики, они шли в разных направлениях. Больцман смотрел внутрь, пытаясь понять, почему эти начала верны, а Гиббс выглядывал наружу, надеясь установить их следствия.