Как и адиабатический процесс, изотермический процесс может идти в обратную сторону. В этом случае вы надавливаете на поршень в цилиндре, содержащем газ, температура которого равна температуре примыкающего к цилиндру охладителя. Температура не повышается, как произошло бы при адиабатическом процессе, поскольку при ее повышении теплота уходит к охладителю. Это называется изотермическим сжатием. При заданной неизменной температуре в таком процессе требуется минимальное количество усилий, или движущей силы, для сжатия газа, и одновременного отвода тепла.
Держа в уме два этих процесса, адиабатический и изотермический, Карно разработал проект идеального теплового двигателя максимальной эффективности.
На рисунке показан вертикальный цилиндр, в котором вверх и вниз ходит поршень. Внизу слева находится нагреватель, обозначенный буквой А, а справа — охладитель, обозначенный буквой В. Теплота используется для расширения газа, который непосредственно толкает поршень.
Нарисованная самим Карно схема идеального двигателя
Когда газ необходимо нагреть, цилиндр с ним подводится к нагревателю (А), а когда его необходимо остудить, цилиндр подводится к охладителю (В). В представлении Карно нагреватель огромен, а потому его температура не падает, сколько бы теплоты из него ни выходило. Она остается, скажем, на отметке Т (нагревателя) градусов. Подобным образом огромен и охладитель, температура которого не растет, сколько бы теплоты в него ни сбрасывалось, оставаясь, скажем, на отметке Т (охладителя).
Далее Карно описывает механизм работы этого двигателя. Это четырехступенчатый цикл, который повторяется снова и снова.
СТАДИЯ 1
Поршень находится почти на дне цилиндра, и некоторое количество горячего воздуха, температура которого равна Т (нагревателя), сжимается в малом объеме между поршнем и дном цилиндра. Цилиндр придвигается к нагревателю, и некоторое количество теплоты, назовем его Н, поступает в газ. В результате газ расширяется и толкает поршень, производя некоторое количество М(1) движущей силы.
Карно указывает, что процесс носит изотермический характер, поэтому вся теплота Н уходит на производство движущей силы М(1).
Это называется рабочим ходом, поскольку большинство движущей силы двигателя применяется именно на этой стадии.
Однако, чтобы двигатель был полезным, останавливаться на этом нельзя. Поршень должен снова опуститься на дно цилиндра, чтобы процесс можно было повторить.
СТАДИЯ 2
Чтобы поршень снова опустился вниз, толкающий его газ необходимо снова сжать. По мнению Карно, лучше всего для этого охладить его до минимально возможной температуры, поскольку сжимать холодный газ проще, чем горячий.
(Если вы в этом сомневаетесь, надуйте воздушный шарик и положите его в холодильник. Через несколько минут он значительно уменьшится в размере, поскольку воздух внутри него остынет и станет более “сжимаемым”. Именно поэтому зимой приспускаются автомобильные шины.)
Первая стадия цикла Карно
Но как лучше всего быстро охладить газ в цилиндре двигателя? Необходимо позволить ему произвести адиабатическое расширение и толкнуть поршень еще выше.
Таким образом, на этой стадии двигатель создает еще немного движущей силы, которую мы назовем М(2), а газ в цилиндре охлаждается до температуры Т (охладителя).
СТАДИЯ 3
Теперь температура газа гораздо ниже, а следовательно, газ гораздо легче поддается сжатию, и некоторая доля движущей силы М(1), произведенной на первой стадии, используется, чтобы толкнуть поршень вниз и снова сжать газ до небольшого объема. Назовем эту долю М(3).
Третья стадия цикла Карно
Карно указывает, что сжатие носит изотермический характер, поэтому М(3) минимальна.
(В соответствии с теорией теплорода Карно полагал, что в ходе этого сжатия вся теплота Н, вошедшая в газ на первой стадии, выходит из него в охладитель.)
По завершении этой стадии газ почти полностью сжат обратно в маленький объем, где он находился вначале. Однако для этого использовано некоторое количество М(3) движущей силы.
Когда поршень возвращается вниз, теплота выходит из газа и отправляется в “охладитель”.
СТАДИЯ 4
Теперь газ снова необходимо нагреть до температуры нагревателя, чтобы подготовиться к повторению первой стадии.
Однако, если использовать для этого теплоту из нагревателя, она будет потеряна, поскольку не сможет создать движущую силу. В связи с этим цилиндр снова герметично закрывается, и еще некоторое количество движущей силы М(ф) используется, чтобы опустить поршень и сжать газ. Поскольку теплота не может покинуть цилиндр, это адиабатическое сжатие приводит к повышению температуры газа до Т (нагревателя).
Теперь газ снова находится в том же состоянии, как и на первой стадии — он горяч и готов расшириться и снова толкнуть поршень.
Четвертая стадия точно противоположна второй. Движущая сила М(4), используемая на четвертой стадии, равна движущей силе М(2), созданной на второй стадии. Следовательно, они компенсируют друг друга.
Этот четырехступенчатый цикл, который инженеры и физики по всему миру сегодня называют циклом Карно, стал одним из величайших мысленных экспериментов в науке. Он позволил Карно оценить, каково максимальное количество движущей силы, которое теоретически можно получить из притока теплоты.
В ходе цикла количество теплоты Н вошло в газ из нагревателя и ушло в охладитель. Каково чистое количество произведенной движущей силы? М(1) минус М(3), то есть разница между количеством, созданным на первой стадии и использованным на третьей. Какова эффективность идеального двигателя? М(1) минус М(3), деленное на Н.
Путь к повышению эффективности двигателей был очевиден. Необходимо было как можно сильнее нагревать газ при расширении и как можно сильнее охлаждать его при сжатии. Чем горячее газы, тем с большей силой они расширяются. Чем они холоднее, тем легче их сжать. Следовательно, чем больше разница температур на этих стадиях, тем более эффективен двигатель.
Приложение 2
Как Клаузиус примирил закон сохранения энергии с идеями Сади Карно
Рудольф Клаузиус полагал, что теплота и работа преобразуются друг в друга, а для производства работы теплота должна перемещаться из горячей зоны в холодную. Он сделал первый верный анализ взаимосвязи работы и теплоты. Его идеи живут в каждом газовом, дизельном и реактивном двигателе, а также в паровых турбинах и ракетах.
Клаузиус начал с переосмысления идеального двигателя и четырехступенчатого цикла Карно, но держал в уме мысль о взаимопревращаемости работы и энергии. В ходе этого исследования Клаузиус выявил форму энергии, которая скрыта от глаз, и обозначил ее буквой U. Сегодня эту величину обычно называют внутренней энергией.
Представьте надутый воздушный шарик. Заключенный внутри него воздух, оказывая давление на оболочку шарика, представляет собой хранилище энергии, напоминающее аккумулятор, который хранит в себе электрическую энергию. Заряд аккумулятора можно расходовать и восполнять, и точно так же можно расходовать и восполнять внутреннюю энергию газа.
Если вы сожмете шарик руками, он окажет сопротивление и станет горячее. Это показывает, что усилие, которое вы прикладываете при сжатии, то есть выполняемая вами работа, еще сильнее повышает внутреннюю энергию заключенного внутри воздуха.
Теперь возьмите шарик в руки так, чтобы он не мог расшириться, и нагрейте его. Вы почувствуете, как давление и температура внутри шарика растут, а значит, добавляемая вами теплота превращается во внутреннюю энергию газа, повышая ее уровень.
Стадия 1. Изотермическое расширение
Внутреннюю энергию можно высвободить в форме теплоты. Если поместить надутый шарик в прохладное место, например в холодильник, он начнет отдавать свою внутреннюю энергию в форме теплоты, выпуская ее в окружающую среду, и по мере этого сжиматься и становиться холоднее.
Внутреннюю энергию можно также преобразовать обратно в работу. Пусть шарик лопнет. Часть его внутренней энергии проявит себя в хлопке, а часть — в полете клочков резины по комнате и смещении окружающего воздуха.
Клаузиус считал, что в тепловом двигателе внутренняя энергия газа должна производить работу как можно эффективнее. Вот как это происходит в четырехступенчатом цикле Карно.
Стадия 2. Адиабатическое расширение
СТАДИЯ 1. ИЗОТЕРМИЧЕСКОЕ РАСШИРЕНИЕ
Некоторое количество горячего газа сжато в малом пространстве между поршнем и дном цилиндра. Когда газ расширяется, он толкает поршень и производит работу, отдавая в процессе часть своей внутренней энергии. Однако, поскольку цилиндр находится рядом с нагревателем, в газ из него поступает теплота, которая восполняет эту внутреннюю энергию. В результате температура газа поддерживается на одном уровне.
Таким образом, на этой изотермической стадии некоторое количество теплоты Н(1) преобразуется в некоторое количество работы W(1).
Стадия 3. Изотермическое сжатие
СТАДИЯ 2. АДИАБАТИЧЕСКОЕ РАСШИРЕНИЕ
Цилиндр герметично закрыт. Газ внутри него продолжает толкать поршень, производя работу, и теряет внутреннюю энергию, однако, благодаря герметичности цилиндра, теплота не поступает внутрь и не восполняет ее. По окончании стадии адиабатического расширения газ становится холоднее, выполнив работу W(2).
СТАДИЯ 3. ИЗОТЕРМИЧЕСКОЕ СЖАТИЕ
Цилиндр находится рядом с охладителем, и газ сжимают. Усилие прилагают к газу. Если бы цилиндр был по-прежнему герметично закрыт, это повышало бы внутреннюю энергию газа, делая его горячее.
Стадия 4. Адиабатическое сжатие
Однако, поскольку цилиндр находится рядом с охладителем, охладитель поглощает всю производимую теплоту Поэтому температура газа не изменяется. Некоторое количество работы W(3) преобразуется в теплоту Н(3).