Игра в имитацию. О шифрах, кодах и искусственном интеллекте — страница 12 из 25

енения, успокоят вас. Моя цель – лишь упростить рассуждения, и я не пытаюсь предрешать ни один из существенно важных вопросов, решение которых еще не найдено.

В том же смысле я полагаю, что нейроны допустимо рассматривать как электрические органы. Раздражение нейрона, развитие и протекание его импульса, а также воздействие этого импульса на синапс[33] – все это может быть описано электрически. Что же касается химических реакций и других явлений, сопутствующих этому процессу, то они важны, для того чтобы понять внутренний механизм функционирования нервной клетки. Быть может, они даже более важны, чем электрические явления. Однако вряд ли они необходимы для описания нейрона как «черного ящика» – органа типа «все или ничего». Кроме того, в этом случае ситуация ничуть не хуже, чем, скажем, в случае электронной лампы. В электронной лампе чисто электрические явления тоже сопровождаются многочисленными другими явлениями, относящимися к области физики твердого тела, термодинамики, механики. Все они важны для понимания устройства электронной лампы, но их лучше исключить из рассмотрения, если последнюю рассматривать как «черный ящик», задаваемый схематическим описанием.

Понятие о переключательном, или релейном, органе

Нейрон и электронная лампа, рассматриваемые с изложенных выше точек зрения, служат двумя примерами того, что принято обозначать терминами «переключательный орган» или «релейное устройство». (Разумеется, электромеханическое реле является другим примером.) Такое устройство определяют как «черный ящик», который в ответ на определенные стимулы или комбинацию стимулов дает энергетически независимую от них реакцию. Это означает, что энергия реакции предполагается достаточной для того, чтобы вызвать несколько стимулов того же рода, что и тот стимул, который вызвал ее. Следовательно, энергия реакции не может быть получена от первоначального стимула. Она должна исходить от иного, независимого источника энергии. Стимул лишь направляет и регулирует поток энергии от этого источника.

Таким источником в случае нейрона является его общий метаболизм[34]. В случае электронной лампы это энергия, которая поддерживает разность потенциалов между катодом и анодом (независимо от того, находится ли лампа в состоянии проводимости или заперта), и в меньшей степени тепловая энергия, удерживающая «горячие электроны» вне катода. В случае электромеханического реле это генератор, создающий ток в той цепи, которая замыкается и размыкается с помощью реле.

Основными переключательными органами живых организмов являются – по крайней мере, в той степени, в которой они здесь рассматриваются, – нервные клетки, нейроны. Основными переключательными органами вычислительных машин современного типа служат электронные лампы; в более старых машинах переключательные органы – полностью или частично – представляли собой электромеханические реле. Весьма возможно, что вычислительные машины не всегда будут агрегатами, состоящими преимущественно из переключательных органов, однако новый этап развития в этой области пока принадлежит далекому будущему. Шаг вперед, которого можно ожидать в более близкое время, будет состоять, по-видимому, в том, что электронные лампы перестанут использоваться в качестве переключательных органов в вычислительных машинах и будут заменены какими-либо другими элементами. Но и это, вероятно, произойдет не ранее, чем через несколько лет[35]. Поэтому я буду рассматривать эти машины исключительно как агрегаты электронных ламп, играющих роль переключательных органов.

Сравнение размеров больших вычислительных машин и живых организмов

Известны две очень большие действующие электронно-ламповые вычислительные машины. Каждая из них содержит около 20 000 переключательных органов. Одна из них – чисто электронно-ламповая (она принадлежит Баллистической научно-исследовательской лаборатории Управления артиллерийско-технического снабжения армии США и находится в Абердине, штат Мэриленд, обозначение ЭНИАК), другая машина – смешанного типа: она содержит и электронные лампы, и электромеханические реле (она принадлежит компании ИБМ и находится в Нью-Йорке; обозначение ССЭК)[36].

По своим размерам эти машины, вероятно, намного больше электронно-ламповых вычислительных машин, которые появятся в ближайшие годы. По-видимому, машины, которые будут строиться в ближайшее время, будут иметь от 2000 до 6000 переключательных органов каждая. (Такое уменьшение размеров объясняется изменением в нашем подходе к устройству машинной «памяти», которое я здесь не рассматриваю.) Возможно, что в дальнейшем размеры машин снова возрастут, однако на современном уровне техники и теоретического знания (philosophy) количество переключательных органов вряд ли превзойдет 10 000 (или, может быть, величину порядка 10 000). Таким образом, величина 104 дает правильное представление о порядке числа переключательных органов вычислительной машины.

В противоположность этому – как это следует из данных, полученных различными путями, – число нейронов центральной нервной системы имеет порядок 1010. Я не знаю, насколько правильна эта цифра, но, по-видимому, величина показателя степени отклоняется от действительной в ту или иную сторону не более, чем на единицу. Таким образом, бросается в глаза то обстоятельство, что центральная нервная система, по меньшей мере, в миллион раз сложнее (larger), чем самый сложный искусственный автомат, о котором мы можем говорить в настоящее время. Весьма интересно выяснить, чем это объясняется и какие вопросы принципиального характера с этим связаны. Мне кажется, что здесь действительно имеется ряд четких принципиальных проблем.


Существенно важные отношения

размеров элементов

Совершенно очевидно, что электронная лампа является гигантом, по сравнению с нервной клеткой. Ее физический объем и потребляемая ею энергия приблизительно в миллиард раз больше, чем у нервной клетки. (Разумеется, тут невозможно привести вполне определенные цифры, однако те, которые приведены выше, достаточно хорошо обрисовывают ситуацию.) Это компенсируется другими факторами. В областях техники, отличных от области вычислительных машин, электронные лампы можно заставить работать на чрезвычайно высоких скоростях, однако здесь мы не будем касаться этих областей их применения. В вычислительных машинах максимум скорости гораздо ниже, но все же заслуживает уважения. При современном состоянии техники его можно считать равным в среднем одному миллиону реакций (actuations) в секунду. Реакция (response) нервной клетки развивается гораздо медленнее, вероятно, она длится 1/2000 секунды, и – что действительно существенно – минимальное время, необходимое для перехода от возбужденного состояния к полному восстановлению, когда клетка может испытывать повторное возбуждение, еще больше – в лучшем случае оно приблизительно равно 1/200 секунды. Это приводит к отношению 1:5000, которое, возможно, в какой-то мере завышено в пользу электронной лампы, так как электронная лампа при ее использовании в качестве переключательного органа, рассчитанного на 1 000 000 операций в секунду, практически не работает на все 100 % в этом режиме. Поэтому такое отношение, как 1:2000, вероятно, будет более подходящим. Таким образом, электронная лампа, обладая размерами, приблизительно в миллиард раз большими, чем нейрон, превосходит последний в работе в 1000 раз (или несколько более). В силу этого с известным основанием можно говорить о том, что ее эффективность меньше эффективности нейрона примерно в миллион раз.

Важным во всех отношениях является тот факт, что нейрон по своим размерам гораздо меньше электронной лампы. Как указывалось выше, электронная лампа приблизительно в миллиард раз больше. Чем это обусловлено?

Причины различия в размерах электронной лампы и нейрона

Источник этого расхождения лежит в основном органе управления, или, точнее, в различии между управляющими устройствами электронной лампы и нейрона. В электронной лампе основной областью управления является пространство между катодом (где зарождаются активные агенты – электроны) и сеткой (которая управляет электронным потоком). Это пространство имеет приблизительно один миллиметр глубины. В нейроне ему соответствует стенка нервной клетки – «мембрана», толщина которой равна примерно одному микрону (71 000 мм) или несколько меньше. Следовательно, на этом этапе отношение линейных размеров управляющих устройств электронной лампы и нейрона составляет приблизительно 1:1000. В этом, между прочим, и заключается основное различие. Электрические поля, действующие в пространстве управления, почти одинаковы для электронной лампы и для нейрона. Разности потенциалов, обеспечивающие надежную работу этих органов, равны десяткам вольт в одном случае и десяткам милливольт в другом. Их отношение снова равно 1:1000, и, следовательно, градиенты разностей потенциалов (напряженности полей) примерно равны. Далее, отношение линейных размеров 1:1000 соответствует отношению объемов 1:1 000 000 000. Таким образом, коэффициент различия, равный 109 для объемов, соответствует, как и должно быть, коэффициенту различия, равному 103 для линейных размеров, т. е. различию между миллиметровой глубиной междуэлектродного пространства электронной лампы и микронной толщиной мембраны нейрона.

Стоит обратить внимание на то (хотя в этом и нет ничего удивительного), что это различие между объектами, каждый из которых является микроскопическим и расположен внутри элементарной компоненты, приводит к поразительному макроскопическому различию между организмами, которые построены на их основе. Это различие между миллиметровым объектом и микронным объектом и обусловливает то, что ЭНИАК весит 30 тонн и потребляет 150 киловатт, тогда как центральная нервная система человека, которая в функциональном отношении в миллион раз сложнее, имеет вес в несколько фунтов и умещается в человеческом черепе.