Информатика: аппаратные средства персонального компьютера — страница 6 из 19

где а = 0, 1, 2, 3…, 7.

Например, число 14738 восьмеричной системы счисления в соответствии с (2.5) примет вид: 1 · 83 + 4 · 82 + 7 · 81 + 3 · 80.

где а = 0, 1, 2, 3…, 9, A, B, C, D, E, F.

В шестнадцатеричной системе счисления используется шестнадцать цифр, из которых десять цифр арабские (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а остальные цифры (10, 11, 12, 13, 14, 15) обозначаются буквами латинского алфавита (А = 10, В = 11, С = 12, D = 13, E = 14, F = 15).

Например, число 33B16 шестнадцатеричной системы счисления, в соответствии с (2.6) примет вид: 3 · 162 + 3 · 161 + В · 160(В = 11).

При операциях с числами, представленными в различных системах счисления, необходимо указывать систему счисления числа, используя нижний индекс, например: 82710 – число 827 в десятичной системе; 11001110112 – число 1100111011 в двоичной системе; 14738 – число 1473 в восьмеричной системе; 33B16 – число 33В в шестнадцатеричной системе счисления.

Преобразование чисел, представленных в двоичной, восьмеричной и шестнадцатеричной системах счисления, в десятичную осуществляется достаточно просто. Для этого необходимо записать число в развернутой форме в соответствии с выражением (2.1) и вычислить его значение. Например:

Преобразование чисел, представленных в десятичной системе счисления, в двоичную, восьмеричную и шестнадцатеричную системы счисления – более сложная процедура, которая может осуществляться различными способами: деления, умножения, вычитания и т. д. При этом необходимо учитывать, что способы перевода целых десятичных чисел и правильных дробей будут различаться. Для перевода целого десятичного числа, например 5310, в двоичную систему можно использовать способ деления, а десятичной правильной дроби, например 0,7510, в двоичную систему – способ умножения. Результаты действий отобразим в соответствующих табл. 2.1 и 2.2.

Таблица 2.1

Таким образом, 5310 = 1101012.


Таблица 2.2

Таким образом, 0,7510 = 0,112.


Перевод чисел из одной системы счисления в другую достаточно просто реализуется с помощью компьютерных программ Калькулятор и MS Excel. Однако следует заметить, что данные программы осуществляют перевод только целых чисел.

Преобразуем число AF16с помощью компьютерного калькулятора в двоичную, восьмеричную и десятичную системы счисления. Запустим программу Калькулятор с помощью команды: [Кнопка Пуск – Программы – Стандартные – Калькулятор]. После запуска программ выполним команду: [Вид – Инженерный]. У калькулятора имеется четыре опционные кнопки, расположенные слева вверху под индикатором вывода результата вычислений. При активизации кнопки Hex осуществляется преобразование числа, отображаемого в поле ввода, и результата вычислений калькулятора в шестнадцатеричную систему счисления, Dec  – в десятичную,  Oct  – в восьмеричную, Bin – в двоичную систему счисления. Активизируем кнопку Hex и введем число АF16. Последовательно переключая кнопки Bin, Oct и Dec, получим следующие результаты: АF16 = 101011112 = 2578 = 17510. На рис. 2.5 показан результат преобразования числа AF16в число 2578.

Рис. 2.5. Программа «Калькулятор»


Последовательность действий при преобразовании шестнадцатеричного числа AF16в двоичную, восьмеричную и десятичную системы счисления с помощью программы MS Excel аналогична преобразованию числа 1997 в римскую систему счисления, но здесь необходимо учесть, что вместо функции «Римское» необходимо использовать функции «ШЕСТН.В.ДВ», «ШЕСТН.В.ВОСЬМ», «ШЕСТН.В.ДЕС» категории «Инженерные» (см. рис. 2.2).

2.2. Арифметические операции над числами, представленными в различных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же правилам. Для проведения арифметических операций над числами, представленными в различных системах счисления, необходимо предварительно преобразовать их в одну систему счисления и учесть то, что перенос в следующий разряд при операции сложения и заем из старшего разряда при операции вычитания определяется величиной основания системы счисления.

Арифметические операции в двоичной системе счисления основаны на таблицах сложения, вычитания и умножения одноразрядных двоичных чисел.

При сложении двух единиц происходит переполнение разряда и производится перенос единицы в старший разряд, при вычитании 0–1 производится заем из старшего разряда, в таблице «Вычитание» этот заем обозначен 1 с чертой над цифрой.

Ниже приведены примеры выполнения арифметических операций над числами, представленными в различных системах счисления:

Арифметические операции над целыми числами, представленными в различных системах счисления, достаточно просто реализуются с помощью программ Калькулятор и MS Excel.

2.3. Представление чисел в компьютере

Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.

Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:

Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n1, где п – число разрядов числа. Максимальное число при этом будет равно 28 – 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.

В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то – 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:

а отрицательное число -53610 = 10000010000110002 в виде:

Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 – 1 = 216-1 – 1 = 215 – 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.

Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.

Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:

1)  модуль числа записать прямым кодом в п (п = 16) двоичных разрядах;

2)  получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули – на единицы);

3)  к полученному обратному коду прибавить единицу к младшему разряду.

Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код – 1111110111100111, а дополнительный код – 1111110111101000. Проверим полученное значение дополнительного кода с помощью калькулятора. Для этого введем значение модуля числа -53610, т. е. число 53610, и с помощью опционной кнопки Bin преобразуем это число, представленное в десятичной системе счисления, в двоичную систему, предварительно установив опционную кнопку 2 байта. Нажав кнопку Not калькулятора, получим обратный код числа, а прибавив к обратному коду двоичную единицу,  – дополнительный код. Окончательный результат получим в поле окна программы Калькулятор (рис. 2.6). Можно поступить еще проще: набрав на калькуляторе число -53610 и активизировав кнопку Bin, получить дополнительной код этого числа в двоичной системе счисления.

Рис. 2.6. Результат получения дополнительного кода


Необходимо помнить, что дополнительный код положительного числа – само число.

Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел – восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(2