Искусственный разум и новая эра человечества — страница 9 из 33

Основной метод и движущая сила машинного обучения – нейронная сеть. В 1958 г. у Фрэнка Розенблатта, исследователя Авиационной лаборатории Корнелльского университета, возникла идея кодирования информации с помощью структуры «узлов» (аналог нейронов, которых в человеческом мозгу насчитывается около 100 млрд) и связей между ними, сила которых обозначалась весовыми коэффициентами (аналог квадриллионов синапсов, соединяющих нейроны). В течение десятилетий недостаток вычислительных мощностей и сложных алгоритмов замедлял развитие любых нейронных сетей, кроме самых простых. Прогресс последних лет в обеих областях освободил разработчиков ИИ от этих ограничений.

В случае с халицином нейронная сеть уловила связь между молекулами (вход) и их потенциальной возможностью подавления роста бактерий (выход). ИИ, открывший халицин, сделал это, не оперируя информацией о химических процессах или функциях лекарств, он обнаружил взаимосвязи между входными и выходными данными при помощи так называемого глубокого обучения, при котором слои нейронной сети, расположенные ближе к входу, отражают свойства входных данных, а слои, расположенные дальше, отражают более широкие обобщения, предсказывающие желаемый выход.

Глубокое обучение позволяет нейронным сетям улавливать сложные взаимосвязи, например между эффективностью антибиотиков и аспектами молекулярной структуры, отраженными в обучающих данных (молекулярный вес, химический состав, типы межатомных связей и т. д.), которые могут ускользнуть от человека. Когда ИИ сталкивается на этапе обучения с новыми данными, он корректирует весовые коэффициенты в нейронной сети, чтобы отразить новую информацию. Точность сети зависит от объема и качества данных, на которых она обучается. Чем больше объемы обучающих данных и чем больше слоев нейросети, тем точнее веса отражают взаимосвязи. В современных глубоких сетях обычно бывает до 10 слоев.

Для обучения нейронных сетей нужны огромные ресурсы. Этот процесс требует значительных вычислительных мощностей, большого количества энергии и сложных алгоритмов для анализа и адаптации к огромным объемам данных. В отличие от человека, большинство ИИ не могут одновременно обучаться и выполнять работу. Обучение и практическое применение – разные этапы функционирования ИИ. На этапе обучения алгоритмы измерения и повышения качества ИИ оценивают и корректируют свою модель для получения хороших результатов. В случае с халицином обучение заключалось в том, что ИИ выявлял взаимосвязи между молекулярными структурами и эффектами антибиотиков на основе данных обучающего набора. На следующем этапе исследователи поставили перед ИИ задачу определить молекулы с сильным антибиотическим эффектом. Этот ИИ не занимался рассуждениями – он делал выводы, применяя разработанную им модель.

Разные задачи – разные стили обучения

Для разных задач, выполняемых ИИ, требуются разные методы обучения. В этом заключается основная проблема внедрения машинного обучения. В зависимости от предполагаемого назначения того или иного ИИ разработчикам приходится использовать различные методы обучения. Из сочетания применяемых методов – алгоритмов машинного обучения, нейронных сетей и способов обучения – возникают новые возможности ИИ, например диагностика рака.

Сегодня можно выделить три основные формы машинного обучения: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. Контролируемое обучение позволило создать ИИ, который обнаружил халицин. Напомним, что в поисках потенциальных новых антибиотиков исследователи МТИ использовали базу данных из 2 тыс. молекул, чтобы обучить модель, в которой на входе была молекулярная структура, а на выходе – эффективность антибиотика. Исследователи предоставили ИИ сведения о молекулярных структурах, эффективность которых как антибиотиков была заранее известна. После этого ИИ смог оценить новый набор соединений.

Этот метод называется контролируемым обучением, поскольку на входе используется набор данных (в случае с халицином – молекулярных структур), индивидуально маркированных в соответствии с желаемым результатом (свойствами антибиотика). Разработчики используют контролируемое обучение для многих целей, например для создания ИИ, распознающих изображения. Для этого ИИ обучают на наборе предварительно атрибутированных изображений – например, изображений кошек с меткой «кошка». Кодируя связь между изображениями и метками, ИИ учится правильно идентифицировать новые изображения. Когда у разработчиков есть набор данных, указывающий желаемый результат для каждого из множества объектов на входе, контролируемое обучение работает особенно эффективно – полученные модели могут предсказывать результаты в ответ на новые входные данные.

Если у разработчиков нет ничего, кроме огромного количества данных, они используют неконтролируемое обучение. Сегодня предприятия, правительства и исследователи благодаря интернету и цифровизации располагают несметными объемами данных – у маркетологов оседает информация о клиентах, у биологов – об образцах ДНК, у банкиров – о финансовых операциях. Когда маркетологи формируют клиентские базы, а финансовые аналитики ищут потенциальные несоответствия в огромных массивах транзакций, неконтролируемое обучение позволяет ИИ выявлять закономерности или аномалии без какой-либо спецификации «правильных» ответов. Разработчики поручают алгоритму обучения создавать группы данных на основе определенных мер сходства. Например, видеосервисы, такие как Netflix, используют алгоритмы, которые определяют кластеры клиентов с похожими привычками просмотра, чтобы рекомендовать им подходящие фильмы. Настраивать такие алгоритмы непросто, поскольку у людей, как правило, много интересов и каждый зритель может попасть во множество кластеров.

ИИ, обученные с помощью неконтролируемого обучения, могут выявлять слишком тонкие закономерности, требующие слишком больших объемов данных для человека. Поскольку таким ИИ никто не диктует критерии «правильности» результатов, они, как и люди-самоучки, могут создавать удивительные инновационные идеи – или выдавать совершенно нелепые результаты.

И при неконтролируемом, и при контролируемом обучении ИИ решают такие задачи, как выявление тенденций, идентификация образов и составление прогнозов, на основе данных. Но если необходимо обучить ИИ работать в меняющейся среде, ограничиваться анализом данных нельзя. Поэтому появилась третья основная категория машинного обучения – обучение с подкреплением.

При обучении с подкреплением ИИ не ограничивается ролью пассивного наблюдателя, выявляющего взаимосвязи в массивах данных, – он активно функционирует в упрощенной контролируемой среде, наблюдая и фиксируя реакцию, вызванную его действиями. Как правило, используются симулированные среды, имитирующие некую упрощенную версию реальности. Например, легче смоделировать работу робота на сборочном конвейере, чем в хаосе переполненной городской улицы. Однако даже в такой упрощенной контролируемой среде, как шахматы, один ход может вызвать целый каскад возможностей и рисков. Поэтому для того, чтобы ИИ самостоятельно тренировался в искусственной среде, как правило, недостаточно обеспечить наилучшие показатели – необходим некий механизм обратной связи.

Такую обратную связь обеспечивает функция подкрепления, указывающая ИИ на то, насколько успешным был его подход. В цифровой среде человек не может эффективно давать обратную связь машине – ведь ИИ выполняет сотни, тысячи или миллиарды шагов в течение нескольких часов или дней. Поэтому функции вознаграждения автоматизируются – для этого разработчики определяют, каким образом имитируется реальность и как должно работать подкрепление. В идеале симулятор обеспечивает реалистичный опыт, а функция вознаграждения способствует принятию эффективных решений.

ИИ AlphaZero тренировался, играя против самого себя – точнее, против второго экземпляра ИИ, играющего за противника, – а для оценки своей работы использовал функцию подкрепления[27], которая оценивала его ходы в соответствии с создаваемыми ими возможностями. Как показывает этот пример, человек занимается созданием среды обучения ИИ с подкреплением, но не может обеспечивать обратную связь в процессе обучения. Человек определяет способ симуляции и функцию вознаграждения, а ИИ обучается. Поэтому для того, чтобы добиться нужных результатов, очень важно тщательно определить метод симуляции и функцию вознаграждения.

Мощь машинного обучения

Описанные «строительные блоки» обеспечивают широкое применение ИИ. В сельском хозяйстве ИИ способствует правильному применению пестицидов, обнаружению болезней сельскохозяйственных культур и прогнозированию урожайности. В медицине он помогает открывать новые лекарства, разрабатывать новые способы применения существующих препаратов, диагностировать и прогнозировать заболевания (например, уже есть случаи диагностики рака груди, ретинопатии, гипогликемии и наследственных заболеваний, выполненной ИИ раньше, чем врачами-людьми). В финансовой сфере ИИ может одобрять выдачу кредитов, слияния и поглощения, банкротства и т. п. или отказывать в них.

Самая убедительная иллюстрация работы ИИ – расшифровка голоса и перевод с иностранных языков. На протяжении тысячелетий человечество сталкивалось с проблемой разрыва в коммуникациях между представителями разных культур и языков. Взаимонепонимание и недоступность иноязычной информации приводили не только к недоразумениям – из-за них страдала торговля, а иногда начинались войны. История о Вавилонской башне – символ человеческого несовершенства, рассказ о горьком наказании за человеческую гордыню. Но теперь все идет к тому, что мощные методы перевода с помощью ИИ сделают межъязыковые коммуникации доступными для широкой аудитории и значительно большему числу людей станет легче общаться друг с другом.

В 1990-х гг. исследователи с переменным успехом разрабатывали системы машинного перевода на основе правил. Эти попытки не привели к созданию универсальных переводчиков. Изменчивость и тонкость языка невозможно было свести к набору правил. Все изменилось, когда в 2015 г. машинный перевод совершил серьезный прорыв с началом использования глубоких нейронных сетей. Но инновации появились не только благодаря применению нейронных сетей или методов машинного обучения – скорее они возникли благодаря новым творческим способам применения этих подходов. Они подчеркивают ключевую способность машинного обучения – делать открытия и внедрять блестящие инновации в процессе создания новых ИИ.