Рис. 4. Управление разгоном ракеты.1 — станция, контролирующая направление полета; 2 — станция, контролирующая скорость полета; 3 — многоступенчатая ракета на стартовой площадке; 4 — последняя ступень ракеты; 5 — подъем ракеты; 6 — сброс первой ступени ракеты, 7 — разворот ракеты; 8 — сброс второй ступени; 9— разгон ракеты; 10— заданная траектория последней ступени ракеты.
Так как никакой коррекции движения космических ракет в пути не производится и весь полет их определяется в конечном счете параметрами движения в конце участка разгона, то обеспечение заданных траекторий движения ракет возможно лишь при очень совершенной системе управления ракетами на участке разгона.
Так, например, расчеты показывают, что при отсутствии какой-либо коррекции движения для попадания ракеты на Луну на участке свободного полета погрешность в скорости должна быть не более нескольких метров в секунду, а отклонение угла направления полета от расчетного направления не должно превышать десятой доли градуса. Отклонение же времени старта от намеченного не должно при этом превышать нескольких секунд. Обеспечение такой точности управления представляет очень сложную задачу. Еще более жесткие требования предъявляются к точности системы управления при направлении ракеты по облетной траектории вокруг Луны, которая была выбрана для третьей советской космической ракеты.
Управление ракетами на начальном участке их пути осуществляется радиотехническими средствами. С помощью системы радиотехнических устройств ракета выводится на прямолинейный участок траектории, и после достижения последней ступенью ракеты требуемой скорости двигатели последней ступени ракеты выключаются по команде с Земли.
Кроме того, для осуществления надежной радиосвязи межпланетных станций с наземными наблюдательными пунктами нужно все время достаточно точно знать изменение характеристик движения космических станций. Это необходимо для того, чтобы производить с требуемой точностью расчет и определять моменты включения бортовых радиопередающих устройств. Именно поэтому требовались систематические измерения траектории третьей советской космической ракеты, обработка данных и уточнения характеристик движения станции как до подхода к Луне, так и после ее облета. Влияния Солнца и Луны на изменение орбиты космической станции также требовали постоянного измерения и уточнения характеристик движения станции.
Точные прогнозы движения искусственных небесных тел, расчет их траекторий были бы невозможны без создания и использования измерительной и расчетной служб, применяющих сложный комплекс различных устройств. Определение параметров движения космических ракет необходимо было производить с большой точностью, соответствующей точности астрономических расчетов. Обычные, выработанные многолетней астрономической практикой приемы определения характеристик движения космических тел в данном случае не могли быть использованы. Действительно, основа наблюдательной астрономии — оптические измерения являются непригодными вследствие небольших размеров ракеты как объекта наблюдения, малой точности угловых измерений при ограниченном времени наблюдения и, наконец, малой надежности этих измерений, зависящих в большой степени от условий видимости и состояния земной атмосферы. Поэтому в измерительной службе космических ракет применяются радиотехнические средства измерений.
Для быстрого определения элементов траекторий советских космических ракет использовалась автоматически действующая электронная аппаратура. Данные измерений кодировались счетно-решающими устройствами, привязывались к астрономическому времени и в виде определенной последовательности импульсов поступали по линиям связи в центральный координационновычислительный центр. В этом центре поступающая информация с помощью электронных устройств автоматически декодировалась и записывалась на перфорированных картах, которые в дальнейшем вводились в электронные вычислительные машины. По данным измерений, поступавшим с различных измерительных пунктов, вычислительные машины производили расчет начальных условий движения ракеты и целеуказаний измерительным пунктам. Данные, выдаваемые вычислительными машинами, получались в результате решения ими уравнений, описывающих совместное движение Солнца, Земли, Луны и автоматической межпланетной станции.
Для координации работы измерительных средств по времени и привязки результатов измерений к единому времени использовалась служба единого времени.
Все измерительные пункты были объединены системой специальной связи, обеспечивающей оперативную передачу данных измерений в вычислительный центр и целеуказаний на измерительные пункты.
Как фотографировалась невидимая сторона луны
Одной из сложнейших задач, которую необходимо было решить для получения уникальных фотографий Луны, являлось обеспечение соответствующей ориентации межпланетной автоматической станции в космическом пространстве. Автоматическая межпланетная станция после отделения последней ступени ракеты произвольно вращалась вокруг своего центра тяжести. Совершенно ясно, что сфотографировать Луну даже 1 раз, не говоря уже о целой серии фотографий, при таком вращении невозможно.
Как же можно обеспечить необходимую ориентацию межпланетной станции?
Известны различные способы ориентации космического летательного аппарата относительно Земли, Солнца, Луны и других небесных тел.
Угловая ориентация космического летательного аппарата может быть осуществлена, во-первых, с помощью нескольких маленьких реактивных двигателей с различным направлением газовых струй. Включая определенную группу ©тих двигателей, можно изменять ориентацию аппарата. Изменить ориентацию космического летательного аппарата можно также, повернув на небольшой угол камеру сгорания.
Другой способ изменения ориентации космического летательного аппарата состоит в использовании вращающихся маховиков, располагаемых на его осях. Применять маховые массы для управления положением межпланетной станции предложил К. Э. Циолковский. Принцип действия маховых масс основан на законе механики, который гласит, что если на систему не действуют внешние силы, то момент количества движения системы тел остается постоянным. Моментом количества движения космического аппарата называется произведение его момента инерции[1] на угловую абсолютную скорость, т. е. скорость относительно неподвижного «мирового пространства». Если мы каким-либо способом начнем вращать маховую массу с постоянной скоростью, то межпланетная станция начнет вращаться в другую сторону с определенной скоростью. Для ориентировки межпланетной станции по одной из трех осей в ее корпусе на двух других взаимно-перпендикулярных осях необходимо поместить по маховику, которые будут вращаться двигателями с определенными угловыми скоростями. Используя такую систему маховиков, можно остановить вращение корпуса межпланетной станции в безвоздушном пространстве и осуществить угловую ориентацию ее относительно небесных тел.
Рис. 5. Траектория полета автоматической межпланетной станции (проекция на плоскость земного экватора).
Ориентация автоматической межпланетной станции производилась с помощью системы, включавшей в свой состав оптические и гироскопические датчики, логические электронные устройства и управляющие двигатели. В начале работы система ориентации прежде всего прекратила произвольное вращение межпланетной станции вокруг ее центра тяжести, возникшее в момент отделения станции от последней ступени ракеты-носителя.
Траектория движения станции была выбрана таким образом, чтобы в момент съемки станция находилась приблизительно на прямой, соединяющей Солнце и Луну. При этом Земля должна была находиться в стороне от направления Солнце — Луна (рис. 5), чтобы не произошло ориентации на Землю вместо Луны.
Перед началом процесса фотографирования нижнее сферическое днище, на котором были установлены солнечные датчики, при помощи системы ориентации было направлено на Солнце. В это время иллюминатор на верхнем днище, под крышкой которого находились объективы фотографических аппаратов, был повернут в сторону Луны. После такой предварительной ориентации оптические устройства станции проверили ее по отраженному от Луны свету, так как во время процесса наводки станция могла и не находиться точно на линии Луна — Солнце. Комплекс устройств, производящих ориентацию, управлялся солнечными и лунными датчиками, преобразовывавшими энергию прямых и отраженных от поверхности Луны лучей Солнца в электрические сигналы. Положение станции во время ориентации на Луну показано на рис. 6.
После того как была произведена точная наводка на Луну, оптические устройства выработали сигнал, разрешавший начало автоматического фотографирования. В течение всего времени фотографирования автоматическая система ориентации обеспечивала непрерывное наведение станции на Луну; при этом помехи, вызываемые отраженным от Земли светом, были практически устранены.
Для фотографирования Луны наши конструкторы создали фототелевизионную аппаратуру, способную работать в сложных условиях космического полета, устойчивую к изменениям температурного режима, сохраняющую фотоматериалы, несмотря на вредное воздействие космических излучений. Одним из условий работы этой аппаратуры было четкое взаимодействие всех ее механизмов в условиях невесомости.
Рис. 6. Положение автоматической межпланетной станции в космическом пространстве при фотографировании обратной стороны Луны (стрелки справа показывают направление лучей Солнца).
На межпланетной станции использовался фотоаппарат с двумя объективами. Как известно, от величины фокусного расстояния объектива (расстояния от линзы до плоскости, на которой получается изображение очень удаленного предмета) зависит масштаб даваемого объективом изображения. Один объектив станции имел фокусное расстояние 200 мм и относительное отверстие (отношение входного отверстия к фокусному расстоянию) 1: 5,6. Этот объектив давал изображение лунного диска, которое полностью вписывалось в кадр. Другой имел фокусное расстояние 500